03 April 2010

Cysticcercosis



CYSTICERCOSIS
By:Palak Parikh

EPIDEMIOLOGY
* Found in approximately 50 million people worldwide (probably an underestimate)
* Endemic in several countries in Central and South America, sub-Saharan Africa, India, and Asia
* Prevalence in this country often higher in rural areas
* 221 deaths identified in the US from 1990-2002 (62% had emigrated from Mexico)

CYSTICERCOSIS TRANSMISSION
* Caused by the larval stage of Taenia solium, the pork tapeworm
* Humans develop by ingestion of T. solium eggs; they can spread infection by:
o Egg-containing feces contaminating water supplies in endemic areas
o Contaminating food directly, as eggs are sticky and can often be found under the fingernails of tapeworm carriers.

LIFE CYCLE
* Once eggs ingested, embryos are released in the small intestine and invade the bowel wall.
* They then disseminate hematogenously to other tissues and develop into cysticerci over 3 weeks to 2 months.
* Cysticerci – liquid-filled vesicles consisting of a membranous wall and a nodule containing the invaginated scolex.
* Scolex – head armed with suckers and hooks and a rudimentary body.

PATHOGENESIS
* Cysticerci initially viable but do not cause much inflammation in surrounding tissues – asymptomatic infection
* Host develops immune tolerance to cysticerci, which remain in this stage for several years.
o Postulated mechanisms of tolerance:
+ Taenia elaborate substances that inhibit or divert complement pathways away from parasite
+ Humoral antibodies do not kill mature taenia.
+ Poorly defined factors may interfere with lymphocyte proliferation and macrophage function, inhibiting normal cellular immune defenses.
* Clinical manifestations occur when inflammatory response develops around degenerating cysticercus.

SYMPTOMATIC DISEASE
* Divided into:
o Neurocysticercosis
o Extraneural cysticercosis

NEUROCYSTICERCOSIS
* 80% of infections are asymptomatic
* Symptoms mainly due to mass effect, inflammatory response, or obstruction of foramina and ventricular system of brain.
* Most common symptoms:
o Seizures
o Focal neurological signs
o Intracranial hypertension
* Peak estimated to occur 3-5 years after infection

NEUROCYSTICERCOSIS
* Increased risk of seizures with a single calcific granuloma.
* Risk of seizures highest when lesions are degenerating and are surrounded by inflammation.
* Encephalitis and diffuse brain edema most common in children and young females.
* 1-3% of cases involve the spinal cord, with thoracic lesions the most common.

NEUROCYSTICEROSIS IN ENDEMIC COUNTRIES
* Most common cause of adult-onset seizures
* Risk of seizures in seropositive individuals 2-3 times higher than seronegative controls.
* Punctate calcifications most frequent finding on neuroimaging of brain.

EXTRANEURAL CYSTICERCOSIS
* Typically involves:
o Eyes – in 1-3% of all infections
o Muscle
o Subcutaneous tissue – nodules most common in patients from Asia and Africa than from Latin America

DIAGNOSIS
* Serologic testing
* Peripheral eosinophilia only if cyst is leaking
* CT scan or MRI
o Pathognomonic Lesion: Scolex – mural nodule within a cyst
* Brain biopsy (only in symptomatic patients with equivocal serology and radiologic tests)

SEROLOGIC TESTING
* ELISA
* Complement fixation (CF)
* Radioimmunoassay
* Enzyme linked immunoelectrotransfer blot (EITB) assay – test of choice

EITB ASSAY
* Enzyme-linked immunoelectrotransfer blot assay
* Test of choice for detecting anticysticercal antibodies
* Uses affinity-purified glycoprotein antigens
* Higher sensitivity (83-100%) and specificity (93-98%) than ELISA
* Can be performed on serum or CSF but has a higher sensitivity on serum.
* Detected 94% of pathologically confirmed NCC with 2 or more lesions compared to only 28% with a single lesion in one study.

CT VS MRI
* MRI preferred since it is more sensitive in detecting:
o small lesions
o brainstem or intraventricular lesions
o perilesional edema around calcific lesions
o scolex
o degenerative changes in the parasite
* CT scan cheaper and better at detecting:
o small areas of calcifications.
o cysticercal infestation of extraocular muscles.

* Perform CT scan first followed by MRI in patients with inconclusive findings or in those with negative CT scans where strong clinical suspicion persists.

PERUVIAN STUDY
POTENTIAL TREATMENTS
* Albendazole (15 mg/kg/day) X 15 days + corticosteroids (30-40 mg prednisolone or 12-16 mg dexamethasone daily) – per UpToDate
* Praziquantel (50 mg/kg/day) X 15 days + corticosteroids (30-40 mg prednisolone or 12-16 mg dexamethasone daily) – per UpToDate
* Corticosteroids alone
* Anticonvulsants in patients who present with seizures or are at high risk for seizures
* Surgery

ALBENDAZOLE VS PRAZIQUANTEL
* Albendazole
o Destroys 75-90% of parenchymal brain cysts
o Does not interact with anticonvulsants
o Levels not adversely affected w/ co-administration of corticosteroids
* Praziquantel
o Destroys 60-70% of cysts 3 months after administration
o Decreased efficacy compared to Albendazole
o Available for oral administration
o Does not cross the blood-brain barrier well, so CSF levels only approx 20% of plasma levels.
o Involves cytochrome P-450 hepatic metabolism, which is induced by corticosteroids, phenytoin, and phenobarbital

* No blinded randomized controlled trials comparing albendazole to praziquantel.
Because of the above, praziquantel is generally considered second-line therapy.

TREATMENT
* One randomized, double-blind, placebo-controlled trial
o 120 pts with living cysticerci in the brain and seizures treated with antiepileptic drugs
+ Randomized to either albendazole (800 mg qd) and dexamethasone (6 mg qd X 10 days) or double placebo
+ Followed for 30 months or until they were seizure-free for 6 months after tapering of antiepileptic drugs
o Results:
+ Resolution of intracranial cystic lesions more common in treatment arm
+ Number of patients experiencing generalized seizures declined in the treatment arm
+ No significant change between the two groups in patients experiencing partial seizures

NEUROCYSTICERCOSIS
* Treatment in those with:
o 5-50 cysts (both antiparasitic and steroids)
o Steroids alone in patients w/ > 50 cysts
* No Treatment in those with:
o Asymptomatic nonviable neurocysticercosis
o Calcified cysts
o Single viable cysts
o Fewer than 5 cysts

ANTICONVULSANTS
* Recommended for patients who present with seizures
* Should be stopped if patient remains seizure-free during therapy to see if the patient remains asymptomatic
* Should be reinitiated chronically if the patient has recurrent seizures
* Should be considered in patients w/ multiple cysts who have no history of seizure activity

SURGICAL INTERVENTION
* Used in some patients with intracranial hypertension
* Shunting improves hydrocephalus, although recurrent blockages of shunts common
* Surgical intervention recommended for cysts:
o Located in the 4th ventricle
o Attached to middle cerebral artery
o Compressing the optic chiasm
o Located in the spine

TREATMENT OF EXTRANEURAL CYSTICERCOSIS
* None if pt asymptomatic
* Surgical excision for intraocular disease
* Medical therapy for involvement of extraocular muscles or optic nerve.
* NSAIDs for patients w/ symptomatic subcutaneous or intramuscular lesions.
* Excision of solitary lesions if NSAIDs fail or not tolerated.

BEFORE INITIATING MEDS…
* Apply PPD.
* Consider treating with a single dose of ivermectin before beginning corticosteroids, as many patients have risk factors for strongyloidiasis.
* Consult ophthalmology to rule out ocular cysticercosis.

PATIENT MONITORING
* Intermittent surveillance w/ imaging until cyst(s) resolve(s).
o Perhaps every 3-6 months if patient improving or earlier if patient symptomatic.
* Reimaging of brain 2 months after completion of treatment
* Consider antiparasitic therapy if cysts growing off therapy

POSSIBLE PREVENTION
* Human Tapeworm Infections
o Inspection of pork for cysticerci
o Freezing or adequately cooking meat to destroy cysticerci
o Administering antiparasitic agents to pigs
* Infection in Pigs
o Confining animals and not allowing them to roam freely
o Improved sanitary conditions
* Egg Transmission to Humans
o Good personal hygiene and hand washing prior to food preparation
o Identifying human carriers of tapeworms
o Mass community programs to treat tapeworm carriers.
* Possible Vaccine – porcine vaccine currently in the works

TAKE HOME POINTS
* Cysticercosis caused by the larval stage of Taenia solium, the pork tapeworm
* Pay special attention if pt from Central and South America, sub-Saharan Africa, India, and Asia, as neurocysticercosis is the most common cause of adult-onset seizures in these endemic areas.
* Order Head CT first to diagnose neurocysticercosis; if negative and suspicion still high, order Brain MRI.
* EITB test of choice for serology.
* Place PPD before starting treatment.
* Obtain Ophthalmology consult before starting treatment.
* Albendazole and Dexamethasone comprise first-line treatment for symptomatic cysticercosis. Consider concurrent anticonvulsants if pt presents with seizures.

REFERENCES
* aapredbook.aappublications.org
* UpToDate.
* www.dpd.cdc.gov
* www.e-radiology.net
* www.parasite-diagnosis.ch
* www.stanford.edu/class/cysticercosis/symptoms

CYSTICERCOSIS.ppt

0 comments:

All links posted here are collected from various websites. No video or powerpoint files are uploaded on this blog. If you are the original author and do not wish to display your content on this blog please Email me anandkumarreddy at gmail dot com I will remove it. The contents of this blog are meant for educational purpose and not for commercial use. If you use any content give due credit to the original author.

This site uses cookies from Google to deliver its services, to personalise ads and to analyse traffic. Information about your use of this site is shared with Google. By using this site, you agree to its use of cookies.

  © Blogger templates Newspaper III by Ourblogtemplates.com 2008

Back to TOP