25 September 2009

Opioid Analgesics & Antagonists



Opioid Analgesics & Antagonists

* Pain management

Opioid Analgesics & Antagonists

* Severe or chronic malignant pain opioids are the drugs of choice.
* Opioids are natural or synthetic compounds that produce morphine-like effects; opiates are drugs obtained from the juice of the opium poppy.
* All drugs in this category act through binding to specific opioid receptors in the CNS to mimic the effects of endogenous agents (endorphins & enkephalins) that eliminate many of the symptoms of a pain syndrome.
* Their anxiolytic and euphoric effects have led to their abuse.

Opioid Receptors

* Opioids interact stereospecifically with protein receptors on the membranes of certain cells in the CNS, on nerve terminals in the periphery and on cells of the gastrointestinal tract and the anatomic regions.
* The major effects of opioids are mediated through three receptor families: μ, κ and δ.
* Analgesic properties are mediated mainly via μ receptors and κ receptors of the dorsal horn of the spinal cord.
* Enkephalins interact more selectively with the δ receptors in the periphery.
* All three families are G-protein coupled receptors and inhibit adenylate cyclase.
* They are also involved in postsynaptic hyperpolarization (increasing K+ efflux) or reducing presynaptic Ca++ influx; this inhibits neuronal activity.

Receptor distribution

High densities of opioid receptors have been identified on peripheral nerve fibers, immune cells and five general areas of the CNS:

1. Brainstem: mediating respiration, cough, nausea & vomiting, maintenance of BP, papillary diameter and control of stomach secretion.

2. Medial thalamus: mediating poorly localized deep pain

3. Spinal cord: receptors located in the substantia gelatinosa are involved in the receipt & integration on sensory input leading to the attenuation of painful afferent stimuli.

Receptor distribution

4. Hypothalamus: mediating neuroendocrine secretion.

5. Limbic system: the greatest concentration of receptors are located in the amygdale, these receptors play a major role in emotional behavior & response and little analgesic effect.

Receptor distribution

6. Periphery: Peripheral nerve fibers bind opioids, they inhibit Ca+2 dependent release of excitatory, pro-inflammatory substances (substance P) from nerve endings

7. Immune cells: the role of these receptors in analgesia is undetermined.

Opioid Agonists

* The strongest naturally occurring analgesic drugs are found in opium from the poppy flower, morphine and less potent codeine. These drugs show a high affinity for the μ receptor and less affinity for the κ and δ receptors.

Morphine


Mechanism of Action:

* Opioids exert their major effects through interaction with central & peripheral opioid receptors, binding results in hyperpolarization, inhibition of nerve firing and presynaptic inhibition of transmitter release.
* Morphine acts at the κ receptors in lamina I & II of the substantia gelatinosa of the cord and decreases the release of substance P, it also inhibits the release of excitatory transmitters from nociceptive nerve terminals centrally and in the cord.

Actions:

Analgesia:

* Opioids cause pain relief by both raising the pain threshold at the spinal cord level and altering the central perception of pain. Awareness of pain remains but it loses its unpleasant character.

Euphoria:

* Opioids produce a sense of contentment and well being, this may be

related to stimulation of the central tegmental tract.

Respiration:

* Opioids cause respiratory depression by decreasing the sensitivity of central respiratory neurons to CO2. This occurs at therapeutic doses and as dose increases respiratory arrest will occur.

Suppression of cough reflex

* Antitussive properties do not correlate with analgesic or respiratory depression effects; this appears mediated via a different receptor complex.

Actions:

Miosis:

* This results from stimulation of μ and κ receptors located in the Edinger-Westphal nucleus of CN III, this is resistant to tolerance, pin point pupils remain after most other opioid effects have developed tolerance.

Emesis:

* Opioids directly stimulate the chemoreceptor trigger zone in the area postrema that causes vomiting.

GI tract:

* Opioids relieve diarrhea by decreasing gut motility and increasing the tone of intestinal smooth muscle. Constipation is also resistant to tolerance. Biliary spasm is exacerbated by increasing biliary tone with sphincter of Oddi spasm.

Cardiovascular:

* At large doses morphine produces hypotension & bradycardia.

Actions:

Histamine release:

* Morphine causes mast cell degranulation with the release of histamine causing urticaria, itching, diaphoresis and vasodilation. In asthmatics it may precipitate bronchospasm.

Hormonal Actions:

* Morphine inhibits the release of GnRH, CRH and deceases the release of LH, FSH & ACTH and β-endorphin. Testosterone and cortisol levels decrease. Prolactin and GH release are increased via suppression of dopamine levels centrally. ADH release is also diminished.

Therapeutic Uses

Read more...

PicornaVirus- Characteristics



PicornaVirus- Characteristics
* pico = small, rna =RNA Viruses
+ icosahedral 30 nm
o naked nucleocapsid = Nonenveloped
o plus strand(+) RNA m-RNA
+ single stranded and capped for infectivity and packaging
+ this genome is infectious(should it be introduced into a cell)
o vertices of capsid creates canyon-like depressions which contain the VAP’s, VAP -1, VAP -2, VAP -3
+ most VAP bind to intracellular adhesion molecule -1(ICAM-1) expressed on epithelial cells, fibroblasts, and endothelial cells

PicornaViruses - Pathogens
* Four genera in this Family cause most Human disease
o Enterovirus enteroviruses
# stable at pH 3(acidic conditions), in detergents, sewage, etc
# replicate at temperature> 33 C
o Rhinovirus rhinoviruses
# sensitive and unstable at pH 3 (acidic conditions)
# replicates best at temperatures =33 C
* thus, confining them to the upper respiratory tract
o Hepatovirus
o Aphthovirus

PicornaViruses – Virus Cycle
* Adsorption the susceptible cells
+ appropriate receptors determine host range
+ ICAM - 1 or similar cellular receptors bind VAP’s
* Penetration
+ internalized by endocytosis
+ sometimes by viropexis thru small channels in the cytoplasmic membrane which removes the capsid
* Uncoating
+ genome released by acidic conditions in the endosome
+ capsid removed by passage thru channels in the membrane

PicornaVirus – Replication
* Viruses replicate in the cytoplasm
+ genome binds directly to ribosomes where in functions as m-RNA
+ viral polyprotein is synthesized in 10 -15 minutes
# polyprotein in cleaved into viral products
* cleavage proteases
* viral RNA dependent RNA polymerase
* misc proteins which inhibit cellular functions
+ negative strand(+) template produced by viral RNA polymerase
# these templates then generate new plus stranded RNA
PicornaVirus – Virus Cycle
* Maturation/Assembly
+ structural proteins VP0, VP1, VP3 ect are cleaved from the polyprotein by the viral induced protease
+ structural protein component assembly, then genome is inserted to complete maturation
* Release
+ virions are released by cell lysis

PicornaVirus - Pathogenesis
* Enteroviruses
o most enteroviruses are cytolytic
o they cause direct damage to the cell by preventing cellular m-RNA from binding to the ribosomes
o also viral m-RNA competes with cellular m-RNA for ribosomal binding sites
o symptoms vary with the tissue trophism of the enterovirus
o most enteroviruses cause viremia
* Rhinoviruses
o bind to ICAM-1 receptors on respiratory epithelial cells
o produce a slow cytolytic effect; not via cellular m-RNA mechanism
o temperature and pH restrict viruses to the upper respiratory tract
o no viremia occurs in Rhinovirus infections
o most Rhinovirus replication occurs in the nose
o infected cells secrete bradykinin and histamine which cause “runny nose”
# these cytokines also enhance the expression of ICAM-1receptors and may cause the virus to spread to adjacent cells

Picornaviridae - Enteroviruses
* Polio Viruses
* Coxackie Viruses
* Echo Viruses
* Entero Viruses

Rhinovirus – Clinical Disease
* Acute Rhinitis = Common Cold
+ nasal obstruction accompanied by sneezing, rhinorrhea (runny nose), mild pharyngitis, headache, and malaise
+ without secondary bacterial infection, rhinovirus infections seldom are accompanied by fever
+ symptoms peak in 3-7 days, but may last up to 3 weeks
# 500 - 1000 infectious virions per milliters of nasal secretion
+ virally infected cells secrete interferon which limits the progression of infection , but also contributes somewhat to symptoms
+ nasal secretory IgA, and serum IgG also contribute to recovery, but produce minimal long term protection due to serotype variation(type specific immunity)
+ cell-mediated immunity plays very little role in controlling rhinoviruses

Enterovirus – Clinical Disease
* Poliomyelitis polio
o symptoms range from asymptomatic (in the oropharynx and gut) to mild febrile illness(fever, headache, sore throat, malaise, to aseptic meningitis (headache, and pain in neck and back), to paralysis( destruction of anterior horn cells and motor cortex cells), to death(destruction of medullary center and cranial nerves)
o Paralytic polio is generally to result of lower motor neuron damage and leading to a flaccid paralysis of the lower extremity
o Bulbar polio – causes damage to the respiratory centers in the medulla

Poliomyelitis - Pathogenesis
* initial virus replication is in lymphoid tissues of tonsils and pharynx
o virus is swallowed (resists acid and bile) and replicates in the lymphoid cells of the Peyers patches
# primary viremia takes the viruses to CNS, anterior horn cells and brain motor cortex - producing paralysis of the extremities
* virus may cross the blood brain barrier into CNS
* or virus may move via peripheral nerves to the CNS
o if virus spreads to other areas of the CNS, like medulla and cranial nerve, then bulbar paralysis of respiration, pharynx, vocal cords, etc
# if virus is shed back to the blood from the CNS, this is secondary viremia
+ pathogenically polio viruses are neurotrphic (narrow trophism)
+ humoral antibody is required for recovery and prevention

PicornaViruses – Other Clinical Diseases
* Herpangia = fever, sore throat with painful swallowing, anorexia and vomiting
o vesicular ulcerated lesion on the soft palate and uvula
o etiological agent is Coxsackie virus A, an enterovirus
o virus is shed from the lesions, respiratory droplets and in the feces(fecal-oral)
* Hand-Foot-Mouth Disease vesicular exanthem
o vesicular lesions on the hands, feet, mouth, tongue accompanied by mild fever
+ Coxsackie virus A16
+ etiological agent is virus is shed/transmitted from lesions and is also shed in the feces(fecal-oral)
* Pleurodynia acute onset of fever and unilateral lowthoracic, pleuritic chest pain which may be excruciating = “devils grip”
o somtimes abdominal pain and vomiting; muscles very tender on affected side
+ etiological agent is Coxsackie virus B
* Myocarditis/Pericarditis acute febrile illness with sudden onset of heart faliure giving symptoms of myocardial infarction
o etiological agent is Coxsackie virus B
o occurs at all ages, but most like threatening in neonates
* Aseptic Meningitis acute febrile illness accompanied by headache, pain in neck and back including nuchal rigidity(signs of meningeal irritation)
+ etiological agent is Coxsackie viruses A, B and Echoviruses
+ may also lead to polio-like paralysis
* Respiratory Tract Diseae common cold (rhinitis)
+ Coxsackie viruses A21/A24; Echoviruses 11/20
* Acute Hemorrhagic Conjunctivitis
+ Enterovirus 70 and CoxsackieVirus A24
* Diabetes insulin-dependent
+ Coxsackie B virus destruction of the Islets of Langerhans
* Hepatitis A Infectious Hepatitis
o Hepatovirus

PicornaVirus - Diagnosis
* Enteroviruses
o Laboratory
+ Clinical Chemistry
# cerebrospinal fluid from CNS disease reveals
* lymphocytic pleocytosis (25 - 500 cell/ml)
# CSF glucose and protein
* glucose normal or slightly depressed
* protein normal or slightly elevated
+ Serology
# detection of specific viral antibody in IgM fraction
# four fold increase in IgG from acute to convelescence
o Culture performed only for epidemiological confirmation
# polioviruses from pharynx or feces
# coxsackie or echoviruses from throat or feces
* monkey kidney tissue culture
* human embryo kidney tissue culture
# culture virus is specifically identified with antibody assays

PicornaViruses - Diagnosis
* Rhinoviruses
o mostly based upon symptoms
o laboratory identification of Rhinoviruses uses
+ serology no antigen in common with all Rhinoviruses
# must find antibody to specific serotype
+ culture human diploid fibroblasts at 33 C

Picornavirus - Epidemiology
Enteroviruses
o enteroviruses are exclusively human pathogens = human reservoir
o modes of transmission
+ Polioviruses
# p-p, indirect, fecal-oral
+ coxsackie and echoviruses
# p-p, aerosol droplets, and fecal-oral
* Rhinoviruses
o account for more than one-half of all upper respiratory tract infections defined and the “common cold”
o transmitted by respiratory droplets (aerosol), contact, and fomites
# hands are a major vector; 40 - 90 % people with colds
o Non-enveloped viruses are stable and survive on hands and fomites for hours

Enterovirus - Polio Control
* control of polio has centered around stimulation artificial active immunity via vaccines
o to shift the ratio of susceptible/immunes.
* Two Polio Vaccines
o Salk Vaccine - three strains of inactive polio viruses(IPV)
o Sabin Vaccine -three strain of active attenuated viruses(TVOPV)
# attenuated viruses are supposed to grow only in the oropharynx or intestinal tract, but not in nerve cells. In absence of reversion, this is the case and system responds immunologically
* Polio will be the next communicable disease to be eradicated
o Changes in Polio immunization guidelines – 1998
+ Use only inactive (Salk) vaccine
+ To reduce reversion of attenuated strains

ParamyxoViruses - Characteisteristics
* single-stranded, negative sense RNA viruses
o helical(spherical) nucleocapsid surround by envelope (150 - 300nm)
+ envelope glycoproteins
# F(fusion) protein - promotes fusion of virus with host cell
* all viruses in this group caused cell-cell fusion of infected cells forming synctytia and giant cells
# VAP - Hemagglutinin-Neuraminidase Paramyxovirus/Mumps
* Hemagglutinin Morbillivirus
* G protein RSV
o various enzymes/proteins carried in virion
+ L protein is the RNA dependent RNA polymerase
+ P protein facilitates RNA synthesis

Paramyxovirinae – Human Pathogens
* Respirovirus = Parainfluenza
* Rubulavirus = Mumps
* Morbilliviruse = Measles
* Pneumovirus = Respiratory Syncytial Disease

ParamyxoVirus- Viral Cycle
* Adsorption
+ VAP’s(HN, H, or G) bind virion envelope to cell surface receptors(sialic acid)
* Penetration
+ F protein promotes fusion of the virion envelope with host cell membrane
# this same protein is expressed on virally infected cells and causes them the fuse forming syncytia(multinucleated giant cells)
* Replication occurs in the cytoplasm of host cells
+ a positive sense(+) template is madefrom the negative-sense(-) RNA
# catalyzed by the virion based RNA dependent RNA polymerase
+ the positive sense(+) RNA serves as the m-RNA for a protein synthesis and as the template for replication of the new negative-sense(-) RNA
* Maturation/Assembly
+ new negative-sense genomes interact with the other viral proteins both structural and non-structural(L, NP, P,) to forms nucleocapsids
+ virions then associate with host cell membrane via virus encoded matrix(M) protein

Read more...

Ectoparasites



Ectoparasites

* What are ectoparasites?
o Insects and arachnids which feed through or upon the skin
* How do they affect human health?
o Transmit disease
o Cutaneous irritation
o Allergic reaction

Biological Classification of Ectoparasites
* Superkingdom Eucaryotae
* Kingdom Animalia
* Phylum Arthropoda
o Class Insecta
o Class Arachnida

Bedbugs
* Class Insecta
* Family Cimicidae
* Order Hemiptera
* Genus Cimex
o Cimex lectularius
o Cimex hemipterus

Bedbugs - Data
* Size = 4-5 mm long/3 mm wide
* Color = varies with maturity and feeding state
o Adult = reddish brown
o Nymphs = yellowish white
* Other names = chinches, wall lice, red coats
* Feeding Apparatus – long sharp proboscis extends from anterior head into a groove under the thorax
* Feeding Pattern – nocturnal, gregarious, blood feeder
* Reproduction – fertile adult female lays yellowish-white eggs
o Eggs hatch into nymphs in 37 – 128 days depending on temperature
* Habitat – places where they can easily access humans at night
o Wood bedsteads, mattresses, loose wall paper, under rugs, etc

Bedbug - Epidemiology
* Distribution – bedbugs move from one human residence to another in various ways
o Water pipes
o Adjacent walls
o Clothing
o Travel bags/luggage
o Laundry
o Furniture

Bedbugs- Health Effects
* Bedbugs have never been associated with any disease transmission
o Their effect on humans is tied to the reaction to the bites
o Reaction varies with the individual
o Most severe reaction are due to cutaneous puncture and the effect of the salvia
+ Causing swelling (welts), irritation, allergic inflammation

Mosquitoes
* Class Insecta
* Order Diptera
* Family Culicidae
* Genus Aedes
* Genus Anopheles
* Genus Culex
* Genus Psorophora

Mosquitoes - Data
* Size = 3 – 5 mm long;
o A few species are much larger = 9 mm long
* Color – dark interspersed with while bands
* Females are blood feeders while males are plant feeders
o Females only mate once; then produce fertile ova for life
o Mosquito life expectancy ~ 5 weeks

Mosquitoes – Life Cycle
* Egg
o Female mosquitoes lay their eggs (oviposit) in aquatic settings
o Standing water, tree holes, buckets, tires, etc
o Generally do not oviposit in large bodies of water like lakes
* Larvae – aquatic life stage
o Hatches from eggs and actively feeds on aquatic debri
* Pupae – aquatic life stage
o Developmental stage – metamorphosis – not feeding
* Adults – male and female

Mosquitoes – Health Effects
* Biological Vectors of Disease Pathogens
o Yellow Fever
o Dengue Fever
o Malaria
o Encephalitis
o Microfilariae = nematode larvae
* Mechanical Vectors of Disease Pathogens

Ticks
* Class Arachnida
* Order Acarina
* Family Ixodidae – hard ticks
* Genus Dermacenter
* Genus Amblyomma
* Genus Ixodes
* Genus Rhipicephalus

Read more...
All links posted here are collected from various websites. No video or powerpoint files are uploaded on this blog. If you are the original author and do not wish to display your content on this blog please Email me anandkumarreddy at gmail dot com I will remove it. The contents of this blog are meant for educational purpose and not for commercial use. If you use any content give due credit to the original author.

This site uses cookies from Google to deliver its services, to personalise ads and to analyse traffic. Information about your use of this site is shared with Google. By using this site, you agree to its use of cookies.

  © Blogger templates Newspaper III by Ourblogtemplates.com 2008

Back to TOP