17 January 2010

Spine Trauma



Spine Trauma – Part A
By:Keith Wilkinson MD FACEP
Keith Wilkinson MD FACEP
St. John Hospital and Medical Center

Spinal Cord Injury
* Background:
o 8,000 -10,000 new cases expected annually
o Young men- mean age 33.5
o More frequently on weekends, holidays, during summer months
* Greater than half of cord injuries occur in the cervical spine region, a third in the thoracic region, and the remainder in the lumbosacral area
* Most cases of spine injury do not involve permanent cord injury
* Majority (90%) caused by blunt
trauma
o Majority from MVCs > falls, gunshot wounds, sports/ recreational activities
Bony Anatomy
Vertebral Anatomy
Anatomy
* Spinal cord occupies:
o ~35% of canal at the level of the Atlas
o ~ 50% of the canal in the lower cervical region (C2-7), thoracolumbar spine
Ventral- front
Dorsal- back
Ascending Spinal Cord Tracks
Dorsal column- medial lemniscus
Ipsilateral loss of tactile discrimination, vibration, joint and muscle proprioception
Leg fibers medial, arms lateral
Crosses just below level of medulla
Dorsal spinocerebellar tract
Transmits unconscious proprioceptive information to cerebellum
Fine coordination of posture
An uncrossed tract
Ipsilateral leg dystaxia
Ventral spinocerebellar tract

Unconscious proprioceptive information to cerebellum
Posture of lower extremities
Crossed tract
Contralateral leg dystaxia
Ascending Spinal Cord Tracks
Lateral spinothalamic tract
Pain and temperature
Crossed tract
Contralateral loss of pain and temperature sensation one segment below lesion
Ventral white commissure
Bilateral loss of pain and temperature
Dorsal Horn
Ipsilateral segmental anesthesia and areflexia
Descending Spinal Cord Tracks
Lateral corticospinal tract
Also called pyramidal system
Volitional motion
90% crossed in medulla
Ipsilateral spastic paresis with pyramidal signs
Ventral corticospinal tract
Mild contralateral muscle weakness
Proximal muscles more affected

Ventral horn
Ipsilateral flaccid paralysis
Dermatome Distribution
Spinal Level Muscle Innervation
Muscle Strength Grading
* 0 Flaccid
* 1 Flicker of muscle contraction
* 2 Full range of motion, gravity excluded
* 3 Full range of motion against gravity only
* 4 Full range of motion against gravity and some external resistance
* 5 Normal

Stability of Spine Fractures
* Three columns-Disruption of 2/3 unstable
A.Anterior column- anterior vertebral body, the anterior annulus fibrosus, anterior longitudinal ligament
B.Middle column-posterior vertebral body wall,posterior annulus fibrosus, posterior longitudinal ligament
C.Posterior column-posterior vertebral arch, posterior ligamentous complex
* Degree of compression
+ Vertebral body compressions > 50 %
generally considered unstable

Spine Fracture Types
* Compression fractures
o Result from axial loading and flexion,
o Failure of the anterior column
o Middle, posterior columns intact
o Usually stable unless > 50% height
o Unlikely to be directly responsible for neurologic damage

Burst Fractures
* Axial load
* Both anterior and middle columns fail
* Retropulsion of bone and disk fragments into the canal
* May cause spinal cord compression

Fracture Dislocations
* Fracture-dislocations
o Most damaging of injuries
o Failure of all three columns
o Compression, flexion, distraction, rotation, or shearing forces

Flexion- distraction

Read more...

Morbidity and Mortality



Morbidity and Mortality
by:Randy Hoover MD

Eponyms: Livedo reticularis associated with stroke-like episodes is known as?
* Sly’s Syndrome
* Sneddon’s Syndrome
* Riley-Day Syndrome
* Shwachman’s Syndrome
* Richter’s Syndrome
73 year old woman presents to an outside acute care clinic with a chief complaint of back pain.
* Upper-thoracic region
* Described as a “bunch,” mild in severity
* Constant, no radiation or change with position, not respirophasic
* Similar to recent transient episodes

History of Present Illness
* Associated with fatigue and malaise
* Night prior to presentation, unable to get comfortable; sweats and nausea
* Recent nose bleeds
* No fevers or rigors
* No chest pain, SOB or abdominal pain
* No bowel or bladder symptoms

Past Medical History
* Chronic A.Fib
o Anticoagulated on warfarin
* H/O Atypical Chest Pain
o Cath 12/00, normal
* Chronic Low Back Pain
* HTN
* CRI
o Baseline Creatinine 1.5
* COPD
* Chronic Diarrhea
* Temporal Lobe epilepsy
* S/P Appendectomy, herniated bowel repair

Medications
* Diltiazem CD 360 mg po qd
* Losartan 50 mg po qd
* Triamterene 50 mg po qd
* Warfarin 5 mg po qhs
* Metoprolol XL 50 mg po qd
* Amlodipine 5 mg po qd

ADR’s: Morphine, ACE Inhibitors
Social History
* Widowed mother of 2
* Consumes a glass of sherry and of cognac daily
* Current 2 ppd smoker
o Approx 100 pk year history
* Lives alone and functions independently

Physical Exam
Gen: 73 yowf, pleasant, NAD, who appeared older than her stated age
T=97.9 P=89 R=18 BP=126/90
Heent: EOMI, PERLA, OP pink and moist. Sclera anicteric
Neck: Supple, JVP =6 cm
Lungs: Poor air movement but otherwise clear
CV: Irreg Irreg no MRG and variable S1
AB: + Bs, soft, non-tender, non-distended, no masses, no hepatosplenomegaly
Back: Tender in the mid-dorsal region. Pain could be reproduced. No paravertebral or bony tenderness. No muscular spasm
Ext: No c/c/e
Labs
Initial Radiology
* RUQ Ultrasound: Multiple gallstones, no
wall thickening, no free fluid or dilated ducts
* CT Abdomen: Gallbladder is distended, no gallstones, slightly enlarged common hepatic and common bile ducts

Further Evaluation
* 2 weeks later: Seen by general surgery at DHMC for possible symptomatic cholelithiasis
o Pt extremely reluctant to undergo surgery
o “ I’ve not been significantly bothered by this”
o Referred to GI for possible ERCP
* 1 month later: Seen by GI
o Persisently elevated alk phos and amylase
o Thought secondary to etoh vs stone passage

Read more...

Lupus Anticoagulant



Lupus Anticoagulant
By:Jennifer Kirkland (Lambe)

Antiphospholipid
Antibody Syndrome
* Antibodies to phospholipids or plasma proteins bound to phospholipids
o Lupus anticoagulant antibodies
o Anticardiolipin antibodies
o Anti-ß2- glycoprotein I antibodies
* Other antibodies: prothrombin, annexin V, phosphatidylserine, phosphatidylinositol
o These antibodies are not standardized for clinical use and their clinical utility is not well characterized

Lupus anticoagulant
* Lupus anticoagulant
o Describes a group of antibodies which react with cardiolipins, other phospholipids, ß2-glycoprotein I, or proteins other than ß2-glycoprotein I
-AND-
o possess “lupus anticoagulant” activity

What is lupus anticoagulant activity?

* Ability to interfere with coagulation testing (in particular, the tests which are phospholipid dependent) leading to prolonged values
* Despite the “anticoagulant effect” in vitro, these antibodies actually cause coagulation in vivo, in the form of arterial and venous thromboses

Lupus anticoagulant:
Actually a Misnomer
* Associated with clotting, not anticoagulation
* More than one antibody is associated with lupus anticoagulant activity
* Only about 50% of individuals with a lupus anticoagulant meet the American College of Rheumatology criteria for the classification of lupus (SLE)

Definitions
* Cardiolipin= mitochondrial phospholipid
o Causes a biologic false positive test for syphilis
* ß2-glycoprotein I -(not a phospholipid but a plasma phospholipid binding protein)
o In early 1990s, discovery that some anticardiolipin antibodies require the presence of ß2-glycoprotein I in order to bind to cardiolipin
o Patients with SLE or the antiphospholipid syndrome require ß2-glycoprotein I in order to bind to cardiolipin
o Most ß2-glycoprotein I-dependent anticardiolipin antibodies recognize ß2-glycoprotein I equally well whether bound to cardiolipin or bound to other anionic phospholipids

Additional info on LAs
* Anticardiolipin antibodies and Anti-ß2- glycoprotein I antibodies may not possess lupus anticoagulant properties
* Specificity of anticardiolipin antibodies for antiphospholipid syndrome increases with titer and is higher for the IgG than for the IgM isotope
* There is no definitive association between specific clinical manifestations and particular subgroups of antiphospholipid antibodies


Effects of antiphospholipid antibodies on coagulation
* Actually has opposing effects on coagulation
Procoagulant Effects
* Inhibits activated protein C pathway
* Up-regulates TF pathway
* Inhibits antithrombin III activity
* Disrupts annexin V shield on membranes
* Inhibits anticoagulant activity of ß2-glycoprotein I
* Inhibits fibrinolysis
* Activates endothelial cells
* Activates and degranulates neutrophils
* Enhances expression of adhesion moleculres by endothelial cells and adherence of neutrophils and leukocytes to endothelial cells
* Potentiates platelet activation
* Enhances platelet aggregation
* Enhanced binding of ß2-glycoprotein I to membranes
* Enhanced binding of prothrombin to membranes
Anticoagulant Effect
* Inhibits activation of factor IX
* Inhibits activation of factor X
* Inhibits activation of prothrombin to thrombin
o “Microenvironment of cell membranes in vivo may promote greater inhibition of anticoagulant pathways and therefore thrombosis.”
o Ultimately, we don’t really know the mechanism by which thrombosis is promoted over anticoagulation

Criteria for detection of lupus anticoagulant antibodies
* Lupus anticoagulant

Read more...
All links posted here are collected from various websites. No video or powerpoint files are uploaded on this blog. If you are the original author and do not wish to display your content on this blog please Email me anandkumarreddy at gmail dot com I will remove it. The contents of this blog are meant for educational purpose and not for commercial use. If you use any content give due credit to the original author.

This site uses cookies from Google to deliver its services, to personalise ads and to analyse traffic. Information about your use of this site is shared with Google. By using this site, you agree to its use of cookies.

  © Blogger templates Newspaper III by Ourblogtemplates.com 2008

Back to TOP