Spine Trauma
Spine Trauma – Part A
By:Keith Wilkinson MD FACEP
Keith Wilkinson MD FACEP
St. John Hospital and Medical Center
Spinal Cord Injury
* Background:
o 8,000 -10,000 new cases expected annually
o Young men- mean age 33.5
o More frequently on weekends, holidays, during summer months
* Greater than half of cord injuries occur in the cervical spine region, a third in the thoracic region, and the remainder in the lumbosacral area
* Most cases of spine injury do not involve permanent cord injury
* Majority (90%) caused by blunt
trauma
o Majority from MVCs > falls, gunshot wounds, sports/ recreational activities
Bony Anatomy
Vertebral Anatomy
Anatomy
* Spinal cord occupies:
o ~35% of canal at the level of the Atlas
o ~ 50% of the canal in the lower cervical region (C2-7), thoracolumbar spine
Ventral- front
Dorsal- back
Ascending Spinal Cord Tracks
Dorsal column- medial lemniscus
Ipsilateral loss of tactile discrimination, vibration, joint and muscle proprioception
Leg fibers medial, arms lateral
Crosses just below level of medulla
Dorsal spinocerebellar tract
Transmits unconscious proprioceptive information to cerebellum
Fine coordination of posture
An uncrossed tract
Ipsilateral leg dystaxia
Ventral spinocerebellar tract
Unconscious proprioceptive information to cerebellum
Posture of lower extremities
Crossed tract
Contralateral leg dystaxia
Ascending Spinal Cord Tracks
Lateral spinothalamic tract
Pain and temperature
Crossed tract
Contralateral loss of pain and temperature sensation one segment below lesion
Ventral white commissure
Bilateral loss of pain and temperature
Dorsal Horn
Ipsilateral segmental anesthesia and areflexia
Descending Spinal Cord Tracks
Lateral corticospinal tract
Also called pyramidal system
Volitional motion
90% crossed in medulla
Ipsilateral spastic paresis with pyramidal signs
Ventral corticospinal tract
Mild contralateral muscle weakness
Proximal muscles more affected
Ventral horn
Ipsilateral flaccid paralysis
Dermatome Distribution
Spinal Level Muscle Innervation
Muscle Strength Grading
* 0 Flaccid
* 1 Flicker of muscle contraction
* 2 Full range of motion, gravity excluded
* 3 Full range of motion against gravity only
* 4 Full range of motion against gravity and some external resistance
* 5 Normal
Stability of Spine Fractures
* Three columns-Disruption of 2/3 unstable
A.Anterior column- anterior vertebral body, the anterior annulus fibrosus, anterior longitudinal ligament
B.Middle column-posterior vertebral body wall,posterior annulus fibrosus, posterior longitudinal ligament
C.Posterior column-posterior vertebral arch, posterior ligamentous complex
* Degree of compression
+ Vertebral body compressions > 50 %
generally considered unstable
Spine Fracture Types
* Compression fractures
o Result from axial loading and flexion,
o Failure of the anterior column
o Middle, posterior columns intact
o Usually stable unless > 50% height
o Unlikely to be directly responsible for neurologic damage
Burst Fractures
* Axial load
* Both anterior and middle columns fail
* Retropulsion of bone and disk fragments into the canal
* May cause spinal cord compression
Fracture Dislocations
* Fracture-dislocations
o Most damaging of injuries
o Failure of all three columns
o Compression, flexion, distraction, rotation, or shearing forces
Flexion- distraction