11 January 2010

Male Reproductive Problems



Male Reproductive Problems
By:Fertilization Specialists
Joshua Prince
Preston Moore
Candace Lindler

Infertility
* Infertility is the inability of a couple to become pregnant
* 6.1 million people in the United States are effected

Treatment
Normospermia with functional defects
Asthenospermia and teratozoospermia
Oligospermia
Untreatable subfertility
Reversible toxin effects
Disorders of sexual function
Gonadotropin deficiency
Obstructive azoospermia
Sperm autoimmunity
Treatable conditions
Primary seminiferous tubule failure
Untreatable sterility
FREQUENCY (%)

TYPE OF INFERTILITY
Table 1. Classification Of Male Infertility By Effectiveness Of Medical Intervention To Improve Natural Conception Rate

* Sperm count equals the number of sperm per cm3 or cc
* The average has dropped in the past 20 years
* 85-90% are treated with medication or surgery
* Lifestyle changes

Normal Reproduction
* Ovulation
* Spermatogenesis
* Sperm meets with egg in fallopian tube
* Fertilization
* Implantation

Male Reproductive System
Female Reproduction System
Normal Spermatogenesis
Testes

* Normal Testes
* 10-14 grams
* Body of the testis
o Epididymis
o Spermatic Cord
* Embryonal Carcinoma
o hemorrhage and necrosis
* Spermatogonium (2N)
Differentiation
* Primary Spermatocyte (2N)
Meiosis I
* Secondary Spermatocytes
Meiosis II
* Spermatids
Differentiation
* Spermatozoa

Spermatogenesis
* Seminferous Tubules
90% of the testis
* Thousands of sperm per second although spermatogenesis 8-10 weeks
* Stored for months
* Degraded and deposited into the circulatory system if not ejaculated

Klinefelter Syndrome
* XXY instead of XX or XY
* usually male
* lower levels of testosterone
* improper formation of semineferous tubules

Bilateral Anorchia
* vanishing testes syndrome
* testes originally present but reabsorbed before or after birth

Oligospermia
* having too few sperm
* due to:
fever
excessive alcohol
smoking
varicocele
orchitis

Azoospermia
* total lack of sperm in ejaculate
* due to:
fever
undescended testicle
obstructions of seminal vesicles
testicle infection

Cryptorchidism
* 30% of males born premature
* 3% of males carried to term
* Predisposes the person to risk of torsion
* Androgen receptor
* Bilateral has six times the impact on infertility
* Increase in Temperature
* Testicular atrophy
* Treated at Childhood

Abnormalities

Read more...

Male Obesity and Semen Analysis Parameters



Male Obesity and Semen Analysis Parameters
By:Joseph Petty, MD
Samuel Prien, PhD
Amantia Kennedy, MSIV
Sami Jabara, MD

Background: Obesity

* Obesity is a growing problem.
* The Behavioral Risk Factor Surveillance System, in conjunction with the CDC, conducted a national survey and found that in 2000, the prevalence of obesity (BMI >30 kg/m2) was 19.8%, a 61% increase since 1991.
* Obesity affects female and male fertility.
* In a study comparing IVF success rates and female obesity, it was shown that a 0.1 unit increase in waist-hip ratio led to a 30% decrease in probability of conception per cycle 2.
* In couples complaining of infertility, male factor plays a role in up to 40% of cases.

Background: Semen Parameters
* What parameters best predict fertility?
* National Cooperative Reproductive Medicine Network: 765 infertile couples (no conception after 12 months), and 696 fertile couples
* greatest discriminatory power was in the percentage of sperm with normal morphologic features.

Hypothesis
* Since there is an observed correlation between obesity and male factor infertility, our hypothesis is that an increased BMI is associated with higher rate of abnormal semen parameters, especially sperm morphology.

Recent Studies
* Danish study by Jensen et al. enrolled 1,558 young men (mean 19 years old) when they presented for their compulsory physical exam as part of their country’s military drafting system.
* The authors showed decreased sperm counts and concentration (39 million/mL vs. 46million/mL) in those with an elevated BMI (>25kg/m2). They did not, however, observe a difference in morphology.
* Hormonal differences
* Kort et al. looked at semen analysis results in 520 men
* grouped according to their BMI, and measured the average normal-motile-sperm count (NMS = volume x concentration x %motility x %morphology)
* Kort concluded that men with high BMI values (>25) present with few normal-motile sperm cells
* Hammoud et al., showed a increased incidence of oligospermia and increased BMI and also showed decreased levels of progressively motile sperm
* Considered each parameter separately.

Sexual function
* Agricultural study: The association between BMI and infertility was similar for older and younger men, disproving the theory that erectile dysfunction in older men is a significant factor.
* Hammoud et al., though primarily concerned with hormones, looked at erectile dysfunction directly and showed that there was no correlation with increases in BMI
* Nguyen et al., effect of BMI is essentially unchanged regardless of coital frequency, suggesting that decreased libido in overweight men is not a significant factor

Hormonal Profile
* Danish study, observed decreased FHS and inhibin B levels in the obese.
* Pauli et al., observed with increases in BMI a decreased total T, decreased SHBG, increased estrogen and decreased FSH and inhibin B.
* Inhibin B, cited for its usefulness as a novel marker for spermatogenesis and its role in pituitary gonadotropin regulation.
* Pauli: no correlation of BMI or skinfold thickness with semen analysis parameters, though it was observed that men with proven paternity versus those without had lower BMI.

Interventions: Gastric Bypass

Read more...

07 January 2010

Management of Radiation Accident victim



Physician and Hospital Responses to Radiological Incidents
By: Robert E Henkin, MD, FACNP, FACR
Professor of Radiology
Director, Nuclear Medicine

Robert H. Wagner, MD, MSMIS
Associate Professor of Radiology
Section on Nuclear Medicine/Department of Radiology
Loyola University
Maywood, IL

Experience of Authors

* Dr Wagner trained at Loyola and the DOE in Oak Ridge - Radiation Emergency Assistance Center/Training Site (REAC/TS)
* Drs Wagner and Henkin co-wrote the original manual for hospital management that was used by the State of Illinois
* Dr Wagner is has been consultant for Radiation Management Consultants since 1990 and trains and drills approximately 5 hospitals/year until 1998. Developed the plan for radiation accidents at Loyola

* Dr Henkin is a member of the Radiation Information Network of the American College of Nuclear Physicians
* Drs Wagner and Henkin are Board Certified by ABNM

Radiation and Terrorism
* Public perceptions of radiation
* The good news and the bad news
* Terrorism scenarios
* Types of radiation injuries
* Hospital response to radiation incidents

The Public Perceptions
The Bad News
* Almost nothing creates more terror than radiation
o It’s invisible to touch, taste, and smell
o Most people have unrealistic ideas about radiation
o Most physicians don’t even understand it
* The objective of the terrorist is as much or more panic than it is physical harm

The Good News

* Nuclear Medicine and Radiation Therapy professionals are well trained in the fundamentals of radiation
* Respect radiation, but do not fear it
* Understand what radiation can and cannot do
* There have been industrial radiation accidents that we have learned much from
* It is easily detected in contrast to biological and chemical agents

What Can We Expect?
* Radiological/Nuclear Terrorism
o A true nuclear detonation
o A failed nuclear detonation
o Radiation dispersal device
* Power Plant attacks

A Nuclear Detonation
* Least likely scenario (fortunately)
* Most likely from a stolen nuclear weapon
* Results would be devastating, both psychologically and in terms of damage

The Unthinkable
* Effects of a 1 megaton detonation in Chicago
o 30% of all hospitals destroyed in 50 mile radius
o Transportation and infrastructure compromised
o Emergency vehicles and professionals unable to respond
o Walking wounded with burns may have been fatally irradiated – unknown effects for days to weeks

Radiological Devices
* Not a “nuclear explosion”
* Consists of a bomb designed to disperse radioactive materials in air and water
o Designed to create panic
o Difficult to clean up, material spreads
o Biological effects may take years to appear
* “A Dirty War” HBO/BBC Films 2005

Failed Nuclear Detonation
* Most likely from an improvised nuclear device (IND)
* Beyond the scope of an individual terrorist – would need 10-15 people
* Greatest barrier is availability of weapons grade material
* Would create a critical mass or explosion, but not the same degree as a true nuclear detonation.
* Nuclear material needs to stay in contact for a longer period of time to allow flux to form

Radiological Dispersal Device

Read more...
All links posted here are collected from various websites. No video or powerpoint files are uploaded on this blog. If you are the original author and do not wish to display your content on this blog please Email me anandkumarreddy at gmail dot com I will remove it. The contents of this blog are meant for educational purpose and not for commercial use. If you use any content give due credit to the original author.

This site uses cookies from Google to deliver its services, to personalise ads and to analyse traffic. Information about your use of this site is shared with Google. By using this site, you agree to its use of cookies.

  © Blogger templates Newspaper III by Ourblogtemplates.com 2008

Back to TOP