03 October 2009

Developmental Toxicology



Developmental Toxicology

* Structural malformations
* Growth retardation
* Functional impairment
* Death of the organism
4 manifestations of developmental toxicity

Teratology
1. the study of malformations or serious deviations from the normal type in organisms

2. the branch of science concerned with the production, development, anatomy, and classification of malformed fetuses.

* Teratogen
o Any agent that causes a birth defect
o After Greek “monster creating”
* Environmental conditions (1200)
* Maternal nutritional deficiencies (1930)
* Rubella virus infection (1941)
* Thalidomide (1961)

Adverse Outcomes in Pregnancy
Cause of human birth defects
Chemical teratogenicity
Pregnancy Risk Categories
Therapeutic Drugs Teratogenic to Humans
* Anticonvulsants
o Phenytoin, primidone, trimethadione, valproic acid, carbamazepine
* Anticancer agents
o Alkylating agents –busulfan, cyclophosphamide, chlorambucil, mechlorethamine
o Antimetabolites-aminopterin, methotrexate, cytarabine
* Androgenic hormones-danazol
* Coumarin anticoagulants-warfarin
* Retinoids-accutane, isotretinoin, etretinate, acitretin
* Antihyperlipidemic agents-lovastatin, atorvastatin
* Other drugs-diethystilbestrol, thalidomide, penicillamine, lithium, fluconazole, misoprostol
Thalidomide
Diethylstilbesterol (DES)
Alcohol (Ethanol)
Fetal Alchohol Syndrome (FAS)
Fetal Alchohol Effects (FAE)
* Cranial facial dysmorphism
* Intrauterine and postnatal growth retadation
* Retarded psychomotor and intellectual development
* IQ 68

Tobacco smoke
* Spontaneous abortions
* Perinatal deaths
* Lower birth weight
* Increased risk of
o Sudden infant death syndrome
o Behavioral attention disorders
o Orofacial cleft (particular xenobiotic gene polymorphisms)
o Gastroschisis (with variant alleles N053, ICAM1, NPPA)
o Branching morphogenesis and maturation of the lung
* Nicotine-related adverse nerodevelopmental outcomes
Cocaine
* At risk for premature labor, spontaneous abortion, increased perinatal mortality and fetal death.
* intrauterine growth retardation, microcephaly, altered presencephalic development, decreased birth weight, a neonatal neurologic syndrome of abnormal sleep, tremor, poor feeding, irritability, and occasional seizures.
* Genitaouinary tract malformation
* Impaired uditory process

Retinoic Acid
Retinoic acid is the active ingredient in “Accutane”, a drug used to treat severe acne. Since its introduction in September of 1982, an estimated 160,000 women of child bearing age have ingested the drug. Between 1982 and 1987, approximately 900-1300 malformed children, 700-1000 spontaneous abortions and 5000-7000 elective abortions are due to Accutane exposure. Exposed children may have hydrocephaly, ear malformations, cardiovascular defects and decreased IQ. Accutane carries a pregnancy category X warning, meaning it is a known human teratogen.
c acid
Retinoids
* Malformations of the face, limbs, heart, CNS, and skeleton
* RXR α receptor
* Schizophrenia
Retinoid Therapies
Tretinoin/ATRA (Vesanoid)
Leukemia
Adapalene (Differin),
Tretinoin (Renova),
Isotretinoin (Accutane)
Acne
Tazartene (Zorac),
Etritinate (Tegison)
Psoriasis
Drugs
RAR and RXR (Simple Version)
* Nuclear Receptors (like ER, PPAR, VDR and others)
* RXR/RAR Heterodimer is functional unit
* Bind selectively to REs in genome
* Act as transcription factors
* Up-regulate or Repress the expression of particular genes

Valproic acid was released in 1967 in Europe and in 1978 in the United States to treat epilepsy. Approximately 11,500 epileptic women become pregnant each year, many of which use valproic acid. By 1980, publications began linking malformed children to in utero exposure to valproic acid (greater than 500 mg/day).

Valproic Acid
* spina bifida with menigomyelocele or menigocele
* The proposed mechanism of action is that valproic acid influences folate metabolism

Angiotensin Converting enzyme inhibitors and angiotensin antagonists
* 2-3 trimester
* related reduced amniotic fluid volume and impaired fetal renal function
o Oligohydromnios
o Fetal growth retardation
o Pulmonary hypoplasia
o Renal failure
o Hypotension
o Death
* First trimester
o Congenital malformation

Read more...

Forensic Anthropology



Forensic Anthropology
Why Forensic Anthropology

* Forensic pathologists are trained to analyze soft tissue and organs. Their experience with hard tissue (bone) is limited.
* The forensic anthropologist specializes in hard tissue morphology, structure and variability. In those cases in which soft tissue has been degraded by time, temperature, environment or other external forces, the only tissue remaining more or less intact is bone.
* Physical Anthropologists and Archeologists study human remains-and have become part of solving crimes.

What Questions Can Forensic Anthropology Answer?

* What is the race of the individual?
* What is the sex of the individual?
* What is the age of the individual?
* What is the stature of the individual?
* What pathologies did the individual have?
* What traumas did the individual have?
* What individual traits did the individual have?

Identity of Decomposed or Skeletal Remains

* Are the remains human or animal? (butchers remains and skeletal remains of dead pets etc. may be found in unlikely places)
* Are they really bones? (wood, stones)
* Are they human?
* How many bodies?
* How long dead? - recent or ancient (e.g. construction or digging at an old burial site)
* Cause of death?
How does this Work?

* Forensic anthropologists use regression equations to determine sex, age, stature, and race of skeletal remains.
* Regression equations are mathematical equations developed from studies of bones of individuals of known sex, age, race, and stature, and are used to predict such things of even fragmentary skeletal remains."

Sex Estimation
* The sex of an individual is determined, when soft tissue is not present, by a number of skeletal indicators.
* The more indicators used to determine sex, the more accurate the results.
* A forensic anthropologist is analytically limited by the bones present and the condition of the bones.
* In general, the muscles in a man are stronger and more developed than in a woman.
* Bones of men are larger and more robust than bones of women.
* Some bones display specific features which can be used to help determination of the sex of the skeleton. The best indicators are the:
o Skull
o Pelvis
o Head of the Femur
Sex Estimation – Adult
* Usually related to size in adult long bones
* Male bones: usually larger, longer in a single population – be cautious if different populations are involved
* Maximum diameter of head of humerus and head of femur may be used (Bass).
* Much more difficult to estimate sex in children’s skeletons.
Sex Estimation: Skull

* Good area for sex determination
* Generalization: male skull more robust, muscle-marked than female: ABSOLUTE
* DIFFERENCES SELDOM EXIST (Bass)
* Sex estimation: face, mandible, vault

Sex Estimation: Face
1. Supraorbital (Brow) ridges: more prominent in males
2. Superior orbital margin: sharper in females
3. Palate: larger in males
4. Teeth: larger in males (Bass)
5. Mastoid process: more prominent and rugged in males.
6. Orbit (Eye socket): Rounder in females, more rectangular in males
7. Chin: more pronounced in males and larger jaws.

Pelvis
* Women give birth. For this reason, the pelvis of a woman is larger than the pelvis of a man.
* The pelvis of a woman is wide and circular whereas the pelvis of a man is narrow and heart-shaped.
* Two angles, the sub-pubic angle and the sciatic notch, cause the differences in the shape of the pelvis.
* In women, the sub-pubic angle and sciatic notch are wide. In men, the sub-pubic angle and sciatic notch are narrow.

Male Pelvis Subpubic Notch
Female Pelvis Subpubic Notch
Pubis Bone Traits Related to Sex
Subpubic angle (degrees) angle made by the inferior borders of the articulated pubis bone
Pubis body width (mm)
Ventral arc: a roughened projection of bone visible on the anterior surface of the pubis bone
Head of the Femur
* In men, the diameter of the head of the femur is larger than 51 mm.
* In women, the diameter of the head of the femur is less than 45 mm.

Determining Ages of Skeletons
* Bone growth stops at about 20 yrs. of age in humans.
* Adult bone continuously adapts to prevailing stresses by appropriate deposition and resorption.
* Deposition and resorption are under hormonal control - integrated with regulation of blood calcium levels.
Skeletal Age
* Skeletal age is the estimated age at which a person died. Skeletal age can be determined by looking at the following:
o sutures of the skull
o teeth
o ribs
o vertebrae
o growth areas of the long bones: epiphyses
Sutures of the Skull
* When a baby is born, the skull is still growing.
* To accommodate this growth, the different bones of the skull are separate.
* By the age of 7, all the different bones have finished growing and the fontanelles have disappeared.
Skull Sutures

The Teeth
* The teeth are arranged in upper and lower arches. Those of the upper are called maxillary; those of the lower are mandibular.

Dental Tissues.
* Enamel. The protective outer surface of the anatomic crown. It is 96% mineral and is the hardest tissue in the body.
* Dentin. Located in both the crown and root, it makes up the bulk of the tooth beneath the enamel and cementum. It lines the pulp cavity.
* Cementum. This substance covers the surface of the anatomic root.
* Pulp. The central, innermost portion of the tooth. It has formative, sensory, nutritive, and functions during the life of the tooth.

* There are four types of teeth with very different shapes:
* Incisors (2)
* Canines (1)
* Premolars (bicuspids) (2)
* Molars (2-3)
* Individual teeth are quite distinct, even when lost from a jaw.

Dental Formula (from the midline)

* Primary (deciduous) teeth.
* It is said as: incisors, two upper and two lower; canines, one upper and one lower; molars two upper and two lower equals ten per side.
* Permanent teeth.
* It is said as: incisors, two upper and two lower; canines, one upper and one lower; premolars, two upper and two lower; and molars, three upper and three lower.

Teeth
* The first teeth to appear are the incisors, which are followed by canines and molars.
* When chewing food, teeth grind down.
* Comparing different teeth gives an idea of how long the teeth have been used.
* Eventually teeth may be lost, due to caries or attrition.

X-Rays Are Used to Date Skulls
* This is the side view of the dentition of a six year old boy.
* There is still some variation from person to person in the order in which the teeth erupt.

Baby Teeth Permanent Teeth

Read more...

30 September 2009

Vitamins



Definition and Classification
* Non-caloric organic nutrients
* Needed in very small amounts
* Facilitators – help body processes proceed; digestion, absorption, metabolism, growth etc.
* Some appear in food as precursors or provitamins

Definition and Classification
* 2 classes, Table 7.1
o Fat soluble:
o Water soluble:
* Fat soluble vitamins
o Found in the fats and oils of food.
o Absorbed into the lymph and carried in blood with protein transporters = chylomicrons.
o *Stored in liver and body fat and can become toxic if large amounts are consumed.
* Water soluble vitamins
o Found in vegetables, fruit and grains, meat.
o Absorbed directly into the blood stream
o Not stored in the body and toxicity is rare. Alcohol can increase elimination, smoking, etc. cause decreased absorption.

Fat Soluble Vitamins
* Vitamin A (precursor – beta carotene)
o 3 forms: retinol (stored in liver), retinal, retinoic acid
o Roles in body:
+ Regulation of gene expression
+ Part of the visual pigment rhodopsin, maintains clarity of cornea (yes eating carrots is good for your eyesight)
+ Required for cell growth and division - epithelial cells, bones and teeth
+ Promotes development of immune cells, especially “Natural Killer Cells”
+ Antioxidant
* Vitamin A
o Deficiencies cause:
+ Night blindness, xerophthalmia (keratin deposits in cornea), macular degeneration.
+ Skin and mucous membrane dryness and infection, keratin deposits.
+ Anemia
+ Developmental defects – bones, teeth, immune system, vision

o Toxicities (RetinA/Accutaine, single large doses of supplements, eating excessive amounts of liver) cause:
+ Fragile RBCs, hemorrhage
+ Bone pain, fractures
+ Abdominal pain and diarrhea
+ Blurred vision
+ Dry skin, hair loss
+ Liver enlargement
o DRI: 700(women)-900(men) micrograms/day, UL 3000 micrograms
o Sources, see snapshot 7.1

* Vitamin D – precursor is cholesterol, converted by UV from sunlight exposure, therefore is a “non-essential” vitamin.
o Roles:
+ Increases calcium absorption in bone, intestines, kidney. Promotes bone growth and maintenance.
+ Stimulates maturation of cells – heart, brain, immune system, etc.

o Deficiencies: rickets (children), osteomalacia (adults). What are some of the causes of deficiencies?
o Toxicities (5X DRI)
+ Loss of calcium from bone and deposition in soft tissues.
+ Loss of appetite, nausea and vomiting, psychological depression.

Bowed legs – Characteristic of rickets

Beaded ribs – Characteristic of rickets
* Vitamin D
o DRI – 5 micrograms/day for ages 19-50, 10 for ages 51-70, 15 for ages >70.
o Sources, see snapshot 7.2

Fat Soluble Vitamins
* Vitamin E – tocopherol, *alpha-, beta -, gamma-, and delta-
o Roles:
+ Antioxidant (protects polyunsaturated fats)
+ Prevention of damage to lungs, RBCs, WBCs (immunity), heart
+ Necessary for normal nerve development
* Vitamin E
o Deficiencies (decreased absorption of fats- liver disease, low fat diets)
+ Premature babies – fragile RBCs (hemolysis)
+ Loss of muscle coordination, vision, immune functions
o Toxicities (more than 1000 milligrams/day)
+ Increases the effects of anticoagulants (Coumadin, Warfarin)
o DRI 15 milligrams/day (alpha-tocopherol)
o Sources, see snapshot 7.3
* Vitamin K – produced by bacteria in large intestine
o Roles
+ Promotes synthesis of blood clotting proteins (**Interferes with Coumadin)
+ Bone formation
o Deficiencies are rare but seen in infants, after prolonged antibiotic therapy, and in patients with decreased bile production.
o Toxicities (>1000 mg/day): rupture of RBCs and jaundice

o DRI: 90(women) – 120(men) micrograms/day
o Sources, see snapshot 7.4

Water Soluble Vitamins
* 8 B vitamins – Tender Romance Never Fails with 6 to 12 Beautiful Pearls (Thiamin, Riboflavin, Niacin, Folate, B6, B12, Biotin, and Pantothenic acid)
o Aid in metabolism of and energy release from carbohydrates, lipids, amino acids.
o Mode of action – coenzymes or parts of coenzymes that are necessary for the proper activity of enzymes, Without the coenzyme, compounds A and B don’t respond to the enzyme.

Read more...
All links posted here are collected from various websites. No video or powerpoint files are uploaded on this blog. If you are the original author and do not wish to display your content on this blog please Email me anandkumarreddy at gmail dot com I will remove it. The contents of this blog are meant for educational purpose and not for commercial use. If you use any content give due credit to the original author.

This site uses cookies from Google to deliver its services, to personalise ads and to analyse traffic. Information about your use of this site is shared with Google. By using this site, you agree to its use of cookies.

  © Blogger templates Newspaper III by Ourblogtemplates.com 2008

Back to TOP