03 October 2009

Forensic Anthropology



Forensic Anthropology
Why Forensic Anthropology

* Forensic pathologists are trained to analyze soft tissue and organs. Their experience with hard tissue (bone) is limited.
* The forensic anthropologist specializes in hard tissue morphology, structure and variability. In those cases in which soft tissue has been degraded by time, temperature, environment or other external forces, the only tissue remaining more or less intact is bone.
* Physical Anthropologists and Archeologists study human remains-and have become part of solving crimes.

What Questions Can Forensic Anthropology Answer?

* What is the race of the individual?
* What is the sex of the individual?
* What is the age of the individual?
* What is the stature of the individual?
* What pathologies did the individual have?
* What traumas did the individual have?
* What individual traits did the individual have?

Identity of Decomposed or Skeletal Remains

* Are the remains human or animal? (butchers remains and skeletal remains of dead pets etc. may be found in unlikely places)
* Are they really bones? (wood, stones)
* Are they human?
* How many bodies?
* How long dead? - recent or ancient (e.g. construction or digging at an old burial site)
* Cause of death?
How does this Work?

* Forensic anthropologists use regression equations to determine sex, age, stature, and race of skeletal remains.
* Regression equations are mathematical equations developed from studies of bones of individuals of known sex, age, race, and stature, and are used to predict such things of even fragmentary skeletal remains."

Sex Estimation
* The sex of an individual is determined, when soft tissue is not present, by a number of skeletal indicators.
* The more indicators used to determine sex, the more accurate the results.
* A forensic anthropologist is analytically limited by the bones present and the condition of the bones.
* In general, the muscles in a man are stronger and more developed than in a woman.
* Bones of men are larger and more robust than bones of women.
* Some bones display specific features which can be used to help determination of the sex of the skeleton. The best indicators are the:
o Skull
o Pelvis
o Head of the Femur
Sex Estimation – Adult
* Usually related to size in adult long bones
* Male bones: usually larger, longer in a single population – be cautious if different populations are involved
* Maximum diameter of head of humerus and head of femur may be used (Bass).
* Much more difficult to estimate sex in children’s skeletons.
Sex Estimation: Skull

* Good area for sex determination
* Generalization: male skull more robust, muscle-marked than female: ABSOLUTE
* DIFFERENCES SELDOM EXIST (Bass)
* Sex estimation: face, mandible, vault

Sex Estimation: Face
1. Supraorbital (Brow) ridges: more prominent in males
2. Superior orbital margin: sharper in females
3. Palate: larger in males
4. Teeth: larger in males (Bass)
5. Mastoid process: more prominent and rugged in males.
6. Orbit (Eye socket): Rounder in females, more rectangular in males
7. Chin: more pronounced in males and larger jaws.

Pelvis
* Women give birth. For this reason, the pelvis of a woman is larger than the pelvis of a man.
* The pelvis of a woman is wide and circular whereas the pelvis of a man is narrow and heart-shaped.
* Two angles, the sub-pubic angle and the sciatic notch, cause the differences in the shape of the pelvis.
* In women, the sub-pubic angle and sciatic notch are wide. In men, the sub-pubic angle and sciatic notch are narrow.

Male Pelvis Subpubic Notch
Female Pelvis Subpubic Notch
Pubis Bone Traits Related to Sex
Subpubic angle (degrees) angle made by the inferior borders of the articulated pubis bone
Pubis body width (mm)
Ventral arc: a roughened projection of bone visible on the anterior surface of the pubis bone
Head of the Femur
* In men, the diameter of the head of the femur is larger than 51 mm.
* In women, the diameter of the head of the femur is less than 45 mm.

Determining Ages of Skeletons
* Bone growth stops at about 20 yrs. of age in humans.
* Adult bone continuously adapts to prevailing stresses by appropriate deposition and resorption.
* Deposition and resorption are under hormonal control - integrated with regulation of blood calcium levels.
Skeletal Age
* Skeletal age is the estimated age at which a person died. Skeletal age can be determined by looking at the following:
o sutures of the skull
o teeth
o ribs
o vertebrae
o growth areas of the long bones: epiphyses
Sutures of the Skull
* When a baby is born, the skull is still growing.
* To accommodate this growth, the different bones of the skull are separate.
* By the age of 7, all the different bones have finished growing and the fontanelles have disappeared.
Skull Sutures

The Teeth
* The teeth are arranged in upper and lower arches. Those of the upper are called maxillary; those of the lower are mandibular.

Dental Tissues.
* Enamel. The protective outer surface of the anatomic crown. It is 96% mineral and is the hardest tissue in the body.
* Dentin. Located in both the crown and root, it makes up the bulk of the tooth beneath the enamel and cementum. It lines the pulp cavity.
* Cementum. This substance covers the surface of the anatomic root.
* Pulp. The central, innermost portion of the tooth. It has formative, sensory, nutritive, and functions during the life of the tooth.

* There are four types of teeth with very different shapes:
* Incisors (2)
* Canines (1)
* Premolars (bicuspids) (2)
* Molars (2-3)
* Individual teeth are quite distinct, even when lost from a jaw.

Dental Formula (from the midline)

* Primary (deciduous) teeth.
* It is said as: incisors, two upper and two lower; canines, one upper and one lower; molars two upper and two lower equals ten per side.
* Permanent teeth.
* It is said as: incisors, two upper and two lower; canines, one upper and one lower; premolars, two upper and two lower; and molars, three upper and three lower.

Teeth
* The first teeth to appear are the incisors, which are followed by canines and molars.
* When chewing food, teeth grind down.
* Comparing different teeth gives an idea of how long the teeth have been used.
* Eventually teeth may be lost, due to caries or attrition.

X-Rays Are Used to Date Skulls
* This is the side view of the dentition of a six year old boy.
* There is still some variation from person to person in the order in which the teeth erupt.

Baby Teeth Permanent Teeth

Read more...

30 September 2009

Vitamins



Definition and Classification
* Non-caloric organic nutrients
* Needed in very small amounts
* Facilitators – help body processes proceed; digestion, absorption, metabolism, growth etc.
* Some appear in food as precursors or provitamins

Definition and Classification
* 2 classes, Table 7.1
o Fat soluble:
o Water soluble:
* Fat soluble vitamins
o Found in the fats and oils of food.
o Absorbed into the lymph and carried in blood with protein transporters = chylomicrons.
o *Stored in liver and body fat and can become toxic if large amounts are consumed.
* Water soluble vitamins
o Found in vegetables, fruit and grains, meat.
o Absorbed directly into the blood stream
o Not stored in the body and toxicity is rare. Alcohol can increase elimination, smoking, etc. cause decreased absorption.

Fat Soluble Vitamins
* Vitamin A (precursor – beta carotene)
o 3 forms: retinol (stored in liver), retinal, retinoic acid
o Roles in body:
+ Regulation of gene expression
+ Part of the visual pigment rhodopsin, maintains clarity of cornea (yes eating carrots is good for your eyesight)
+ Required for cell growth and division - epithelial cells, bones and teeth
+ Promotes development of immune cells, especially “Natural Killer Cells”
+ Antioxidant
* Vitamin A
o Deficiencies cause:
+ Night blindness, xerophthalmia (keratin deposits in cornea), macular degeneration.
+ Skin and mucous membrane dryness and infection, keratin deposits.
+ Anemia
+ Developmental defects – bones, teeth, immune system, vision

o Toxicities (RetinA/Accutaine, single large doses of supplements, eating excessive amounts of liver) cause:
+ Fragile RBCs, hemorrhage
+ Bone pain, fractures
+ Abdominal pain and diarrhea
+ Blurred vision
+ Dry skin, hair loss
+ Liver enlargement
o DRI: 700(women)-900(men) micrograms/day, UL 3000 micrograms
o Sources, see snapshot 7.1

* Vitamin D – precursor is cholesterol, converted by UV from sunlight exposure, therefore is a “non-essential” vitamin.
o Roles:
+ Increases calcium absorption in bone, intestines, kidney. Promotes bone growth and maintenance.
+ Stimulates maturation of cells – heart, brain, immune system, etc.

o Deficiencies: rickets (children), osteomalacia (adults). What are some of the causes of deficiencies?
o Toxicities (5X DRI)
+ Loss of calcium from bone and deposition in soft tissues.
+ Loss of appetite, nausea and vomiting, psychological depression.

Bowed legs – Characteristic of rickets

Beaded ribs – Characteristic of rickets
* Vitamin D
o DRI – 5 micrograms/day for ages 19-50, 10 for ages 51-70, 15 for ages >70.
o Sources, see snapshot 7.2

Fat Soluble Vitamins
* Vitamin E – tocopherol, *alpha-, beta -, gamma-, and delta-
o Roles:
+ Antioxidant (protects polyunsaturated fats)
+ Prevention of damage to lungs, RBCs, WBCs (immunity), heart
+ Necessary for normal nerve development
* Vitamin E
o Deficiencies (decreased absorption of fats- liver disease, low fat diets)
+ Premature babies – fragile RBCs (hemolysis)
+ Loss of muscle coordination, vision, immune functions
o Toxicities (more than 1000 milligrams/day)
+ Increases the effects of anticoagulants (Coumadin, Warfarin)
o DRI 15 milligrams/day (alpha-tocopherol)
o Sources, see snapshot 7.3
* Vitamin K – produced by bacteria in large intestine
o Roles
+ Promotes synthesis of blood clotting proteins (**Interferes with Coumadin)
+ Bone formation
o Deficiencies are rare but seen in infants, after prolonged antibiotic therapy, and in patients with decreased bile production.
o Toxicities (>1000 mg/day): rupture of RBCs and jaundice

o DRI: 90(women) – 120(men) micrograms/day
o Sources, see snapshot 7.4

Water Soluble Vitamins
* 8 B vitamins – Tender Romance Never Fails with 6 to 12 Beautiful Pearls (Thiamin, Riboflavin, Niacin, Folate, B6, B12, Biotin, and Pantothenic acid)
o Aid in metabolism of and energy release from carbohydrates, lipids, amino acids.
o Mode of action – coenzymes or parts of coenzymes that are necessary for the proper activity of enzymes, Without the coenzyme, compounds A and B don’t respond to the enzyme.

Read more...

Coagulation Testing



Coagulation Testing
By:Diane Jette
BioMedica Diagnostics Inc.

Composition of Blood
* Formed Elements
o Erythrocytes (RBC)
o Leukocytes (WBC)
+ Neutrophils
+ Eosinophils
+ Basophils
+ Lymphocytes
+ Monocytes
o Thrombocytes (Platelets)
* Plasma
o 92% water
o 7 to 9 % of solutes are proteins
+ 55 to 60% Albumin, 15% Globulins, 4% Fibrinogen
o Non-protein nitrogen substance, Enzymes, Antibodies, Electrolytes, etc.
o Serum: No fibrinogen or Factors II, V and VIII

Hemostasis is the arrest of bleeding from an injured blood vessel
* Vasoconstriction and compression of injured vessels
* Platelets adhere to the site of injury and form a platelet plug
* Platelets release factors to augment vasoconstriction and initial vessel wall repair
* Platelets provide surface membrane sites and components for the formation of enzyme/cofactor complexes in blood coagulation reactions

Coagulation Reactions Lead to the Formation of a Blood Clot
* Two pathways: Intrinsic and Extrinsic - Coagulation Cascade
* Formation of a prothrombin activator - complex of Factor Xa, Factor Va and procoagulant phospholipid on surface of platelets.
* Prothrombin activator cleaves prothrombin into two fragments to give Thrombin.
* Thrombin cleaves small peptides from fibrinogen to form fibrin monomers that polymerize.
* Thrombin activates Factor XIII to cross-link the fibrin to form an insoluble clot.

Coagulation Cascade
* Intrinsic Pathway: (APTT)
o Factors VIII, IX, XI, and XII.
o Activated on surface of exposed endothelium.
o Complexes form on platelet phospholipids.
* Extrinsic Pathway: (PT)
o Factors IV, V, VII, X
o Activated by Tissue phospholipids (Tissue Factor or Tissue thromboplastin) released into blood as a result of tissue damage.
* Common Pathway (Thrombin Time)
o Factors I and II
o Leads to the formation of Fibrin Clot
o Thrombin time does not measure deficiencies in Intrinsic or Extrinsic pathway

The Role of Calcium
* Ca ions are needed for most of the reactions in the Coagulation Cascade
* Ca-chelating agents are used in vitro as anticoagulants (Citrate, EDTA, Oxalate)
* When Coagulation Factors are synthesized without Vitamin K they cannot bind Ca and lose enzymatic function

Regulatory Mechanisms
* Inhibition of Factor Activity
o Plasma protease inhibitors: anti-thrombin III (ATIII), *2-macroglobulin, *1 - antiprotease
o Heparin converts ATIII from a slow acting inhibitor to an instantaneous inhibitor of Thrombin, Factor Xa and Factor IXa
o Protein C and Protein S are serine proteases that cleave Factors VIII and Factor Va rendering them inactive

Fibrolysis
* Fibrin clot is degraded by protolytic enzymes and fragments dissolved in blood
* Process is catalyzed by Plasmin
* Plasminogen is converted to Plasmin
* Activation by tissue plasminogen activator (tPA) and urokinase
* Fibron degrades into large fragments X and Y then smaller fragments D and E

Regulation of Fibrolysis
* Plasminogen activator inhibitors (PAIs) and plasmin inhibitors slow the fibrolysis process
* tPA and urokinase have short half-lives and are rapidly cleared through the liver
* Unbound plasmin is instantaneously neutralized by 2-antiplasmin

Hereditary Coagulation Disorders
* Hemophilia A
o Factor VIII deficiency
o 80% of all Hemophilia cases
* Hemophilia B
o Factor IX deficiency
* Prolonged ATPP
o Recovered by dilution 1:1 with normal plasma
* Normal PT and Normal Bleeding Time
* Factor XI Deficiency
o 5 to 9% of European Jews
* 2-antiplasmin Deficiency

Acquired Coagulation Disorders
* Liver Disease
o Impaired clotting Factor synthesis
o Increased fibronolysis
o Thrombocytopenia
* Desseminated Intravascular Coagulation (DIC)
o Something enters the blood that activates factors
o Complication of obstetrics, infection, malignancy, shock, severe brain trauma
o Elevated PT, APTT, D-Dimer and other fibron degradation products

Circulating Anticoagulants
* Antibodies that neutralize clotting factor activity
* Factor VIII Anticoagulants
o Antibody
o Same profile as Hemophilia A
o Clotting time not restored by mixing with normal plasma
o Life-threatening condition

Lupus Anticoagulants
* Antibodies to phospholipid binding sites on clotting factors
* Prevent factors from accumulating on phospholipid surfaces
* Elevated APTT clotting times not corrected with mixing with normal plasma
* PT normal or slightly elevated.
* Non-specific depression of clotting factor activities (Factors VIII, IX, XI, XII)
* Test sensitivity increased by using diluted reagent
o Dilute ATPP reagent, Russell’s viper venom time, Kaolin time
o Clotting times corrected with the addition of phospholipids

Oral Anticoagulant Therapy
* Coumadin or Warfarin
* Inhibitor of Vitamin K dependant Factor synthesis
* Oral anticoagulant
* Dose regulated by therapeutic effect
* PT assay to measure INR
* INR range established for optimum therapeutic effect (typically 2.0 to 3.0)

Prothrombin Time: PT
* PT reagent contains Calcium ions and Thromboplastin from brain tissue (Rabbit).
* Thromboplastin (Tissue Factor) protein-lipid complex found in tissues outside blood vessels.
* Measures the function of the Extrinsic Pathway.
* Sensitive to Factors IV, V, VII, X.
* Provided as a lyophilized reagent.
* Used to monitor oral anticoagulant therapy (Warfarin / Coumadin).

PT Reagent Calibration
* Reagents are calibrated against standard PT reagent established by the WHO.
* ISI = International Sensitivity Index.
* ISI is assigned by the manufacturer for each lot of reagent using reference material traceable to WHO.
* The lower the ISI the more sensitive the Reagent
o ISI of 1.8 to 2.4 = Low sensitivity (North American Standard PT)
o ISI of 1.4 to 1.8 = Average sensitivity
o ISI 1.0 to 1.4 = High Sensitivity

PT: INR Values
* INR = International Normalised Ratio.
* MNP = Mean Normal Plasma.
* INR = (PT / MNP)ISI
* An INR of 1.0 means that the patient PT is normal.
* An INR greater then 1.0 means the clotting time is elevated.

INR Calculation
* Example 1
o MNP = 12.0 s
o ISI = 1.25
o Patient Plasma = 20 s
o INR = (20.0 / 12.0)1.25 = 1.9
* Example 2
o MNP = 12.0 s
o ISI = 1.85
o Patient Plasma = 17 s
o INR = (17.0 / 12.0)1.85 = 1.9
* Example 3
o MNP = 12.0 s
o ISI = 1.4
o Patient Plasma = 20 s
o INR = (20.0 / 12.0)1.4 = 2.0
* Example 4
o MNP = 12.0 s
o ISI = 2.0
o Patient Plasma = 20 s
o INR = (20.0 / 12.0)2.0 = 2.8

Expected PT Values

Read more...
All links posted here are collected from various websites. No video or powerpoint files are uploaded on this blog. If you are the original author and do not wish to display your content on this blog please Email me anandkumarreddy at gmail dot com I will remove it. The contents of this blog are meant for educational purpose and not for commercial use. If you use any content give due credit to the original author.

This site uses cookies from Google to deliver its services, to personalise ads and to analyse traffic. Information about your use of this site is shared with Google. By using this site, you agree to its use of cookies.

  © Blogger templates Newspaper III by Ourblogtemplates.com 2008

Back to TOP