29 March 2010

MRI Safety and Policies & Procedures



MRI Safety and Policies & Procedures

Magnet Safety at ALL TIMES
Outline
Understanding Magnets
o Your role in MR Safety
o Metallic Screening
o Screening Patients / Colleagues
o Other Safety Considerations

What to do in Emergencies
MRI Department Policies and Procedures
Preview MRI Safety Videotape

Magnetism / Magnets
* All substances possess some form of magnetism.
* The degree of magnetism exhibited depends on the atoms that make-up the substance.
* Magnetic susceptibility is the ability of a substance to become magnetized.
* Ferromagnetic substances, such as iron have a large magnetic susceptibility, it is easily magnetized permanently and becomes a magnet itself.
* All magnets have a North and a South pole.
* All magnets have a “fringe” magnetic field which exists in the vicinity surrounding the magnet.

Magnetic Fringe Fields
* The fringe magnetic field is the magnetic field which exists in the vicinity surrounding the magnet.
* This field may extend many meters from the magnet itself.
* These imaginary lines of force demonstrate the pattern of the magnetic field.
* Safety and operational concerns make it necessary to contain the fringe field to a small area.
* Magnetic fields are measured in units of Gauss or Tesla.

MRI Safety at ALL TIMES
A STATIC MAGNETIC FIELD IS ALWAYS PRESENT 24hrs/day, 365 days/yr. EVEN WHEN NOT IN USE.
ANY PERSON USING THE MAGNET MUST BE CERTIFIED AFTER ATTENDING THE MRI SAFETY TRAINING CLASS.
ONE MUST BE TRAINED ON THE SCANNER INTERFACE BEFORE SCANNING.

What is your role in MR Safety?
The greatest risk of injury and damage to the system results from:
o Misuse or abuse of the MR equipment
o Failure to comply with recommended safety procedures
o Lack of proper inspection and maintenance of the MR equipment

Who should know MR Safety?
All in-house personnel that have reason to enter the MR suite area should be trained in MR safety procedures:
o MR technologists, students, researchers, transporters and other medical personnel
o Maintenance and janitorial personnel
All personnel must be thoroughly briefed about the potential risks involved and reminded not to bring any ferromagnetic items into the magnetic field.

Examples of items in-house personnel may have that can become projectiles if brought into the magnetic field

Tool Kits
Clipboards, Metal Pens
Tools
Gurneys, Wheelchairs
Vacuum Cleaners
Oxygen Cylinders
Buffers
Stethoscopes
Buckets
Scalpels, Syringes, Needles
Dustpans
Scissors, Hemostats
Maintenance & Janitorial personnel
MR technologists, students, researchers, transporters & other medical personnel

Who should know MR Safety?
Public safety forces that may respond to the MR suite for an emergency must also know the potential hazards of the MR equipment.
o Law enforcement personnel
o Fire department personnel

A person from the MR site should discuss the possible hazards with these people and provide them with handouts that will reinforce the information.

Examples of items public safety forces may have that can become projectiles if brought into the magnetic field
Breathing apparatus
Fire Extinguishers
Flashlights
Pike poles
Clipboards
Nozzles
Handcuffs
Hose couplings
Knives
Axes
Guns
Fire Department personnel
Law enforcement personnel

MRI Safety - Projectiles
* Projectile effects of metal objects seriously compromise safety. The potential harm cannot be over emphasized.
* Many types of clinical equipment are ferromagnetic and should never be brought into the scan room.
* Items may be tested for magnetic susceptibility with a hand-held magnet located at each MR station.

Metal Objects Becoming Projectiles
Fatal Accidents CAN Happen!
Patient Emergencies
Should a condition exist where the patient is having a medical emergency, all efforts must be made to quickly and safely remove the patient from the scan room.
Once the patient is removed from the MR scan room, close the door to prevent re-entry.
Under no circumstances should a “code team” be allowed to enter the scan room without proper screening!
Controlled Access Area
Although not detectable by the human senses, a magnetic field can be dangerous to equipment and to people.
Since a magnet is always “at field,” safety procedures must be followed to prevent accidents.
For the safety of patients and personnel, controlled access areas are established.

Controlled Access Area
* These areas are established for the safety of patients and personnel.
* The area is labeled with the use of warning signs and markings to prevent the entry of ferromagnetic objects into the controlled access area and to limit the access of individuals with medical implants near high magnetic fields.
* Public access begins at the 5 gauss line (0.5mT).

Equipment / Personal Items
The magnetic field can seriously damage or impair the operation of equipment or personal items such as:
o Oscilloscopes (slow moving electron beams)
o Camera
o Watches
o Credit / Bank cards
o Hearing Aids
o Hair Accessories, Belt Buckles, Shoes

Screening Procedures
* At least one MR operator must screen the patient for possible contraindications that could affect the MR scan. See Patient History and Safety Screening form.
* Check implanted devices in the Reference Manual for Magnetic Resonance Safety by Frank Shellock, Ph.D. or by using MRIsafety.com
Example of MRI Metal Screening Sheet
Screening Procedures
Static magnetic fields can alter the operation of electrically and mechanically operated implants and must remain outside the 5 gauss line.
Pregnant medical personnel should take precautions and remain outside of the magnet room during scanning.
Questions about implants not found in reference material should be discussed with a licensed, MRI technologist or a radiologist before allowing the patient to be scanned.
Absolute Contraindications
* Cardiac Pacemakers (except in rare, controlled environments)
* Cochlear (inner ear) implants
* Swan-Ganz catheters with thermodilution tips
* Ferromagnetic or unidentifiable aneurysm clips of the brain
* Implanted neuro stimulators
* Metal or unidentifiable foreign bodies in the eyes
* Shrapnel near a vital organ
Bioeffects
There is no conclusive evidence for irreversible or harmful bioeffects in humans below 3.0T.
Reversible abnormalities may include but are not limited to:
o Localized tissue and core body temperature heating
o Cutaneous sensations (tingling)
o Peripheral nerve stimulation (involuntary muscle contractions)
o Burn hazards
* Burn Hazards are caused by damaged hardware or by electrical currents produced in conductive loops of material.
* Localized heating is caused by RF irradiation energy absorption to a volume of tissue.
* Dissipation of the absorbed RF energy is described in terms of Specific Absorption Rate (SAR), measured in watts/kg.
* SAR is calculated by the patient’s weight and the expected increase in body temperature for each imaging pulse sequence.
* Patients with poor thermo-regulatory systems must be carefully monitored.
Acoustic Noise
The MR scanner can produce very high acoustic noise levels.
Some patients may experience discomfort from the associated noise of the scanner.
Prior to scanning, it is strongly recommended that earplugs be provided to the patient to reduce the noise level by at least 25dB.

Operating Safely
When operating the MR equipment, be attentive to the following abnormal conditions:
* Louder-than-normal motor noises
* Sparks
* Components overheating
* Smoke or odors coming from the electronic equipment or from within the scan room.
Do not operate equipment with protective panels opened or removed, there is risk of electric shock and can cause image artifacts.

Magnetic Field / Scan Room Emergencies
If an emergency situation arises, you may need to quickly bring down the patient systems and remove power from the MR system.
The nature of the emergency will dictate which procedure you follow. Each procedure has a distinct and specific purpose.
Each magnet is equipped with two emergency buttons:
* Emergency Stop / Shut Off
o Turns off all incoming electrical power to the magnet Power Distribution Unit (PDU)
* Quench or Emergency Run Down
o Causes immediate collapse of the superconductive magnetic field within minutes

FAMILIARIZE YOURSELF WITH THESE BUTTONS. KNOW THE DIFFERENCE!
Emergency Stop / Shut Off Button
Shutting power to the PDU may be required for life threatening situations such as:
* Fire in the computer room
* Fire, sparks, loud noises emanating from the scan room
* Flooding or sprinkling system goes off
* Catastrophic equipment failure
***Keep in mind that when this button is pushed, it does not initiate a quench, the magnet remains “at field.” Exercise caution, make sure that all ferromagnetic materials remain outside of the scan room***
Quench / Emergency Run Down Button
The following situation is THE ONLY TIME that may require quenching of the magnet:
* Large magnetic object pins or impales a person against the magnet and no other method can prevent further injury or free the person.
Do not attempt to pull large magnetic objects (oxygen tanks) from a magnet field. The object may change its magnetic polarity and re-align itself on the magnet and become a projectile, causing a serious or fatal injury.
Do not touch a quenched magnet. Under certain conditions, an electrical potential of >1,000 volts could exist on the surface of the magnet.

Quenching
Definition: a loss of superconductivity of the magnet coil due to a local temperature increase in the magnet as it becomes resistive, resulting in rapid evaporation of liquid helium in the cryostat and quickly reducing the magnetic field strength.
* A quench may happen spontaneously or can be manually instigated in case of an emergency.
* Quenching may cause severe and irreparable damage to the superconducting coils (magnet).
* A magnet quench will result in several days’ downtime, so do not press the button except in a true emergency.
* Do not attempt to test this button!

Emergency Buttons @ MR1 Univ. of Utah Hospital
* QUENCH BUTTON
o Button is located on the east wall (with window).
* E-STOP BUTTON
o Button is located behind the door as you enter the scan room (on the right).
QUENCH
OXYGEN
SENSOR
QUENCH
University of Utah Hospital and Clinics
MRI Department Policies and Procedures
This manual is available at all sites having a MRI scanner. Detail of all departmental situations can be reviewed. The following safety considerations are further highlighted:

Cryogen Safety Oxygen Monitors
Metallic Screening Pregnancy / Nursing
Magnet Quench Medical Emergencies
Magnetic Field / Scan Room Emergencies
Summary
* MRI scanners are powerful magnets with the ability to attract ferromagnetic objects.
* Any personnel around the MRI suite must be adequately screened for metallic implants and personal items before entering the scan room.
* Patients in the scanner must be carefully monitored for reversible bioeffects caused by the magnet’s hardware.
* Become familiarized with E-Stop vs. Quench buttons at each scanner.
* Review Policies and Procedures Manual

Congratulations!
You have completed the University of Utah Hospital and Clinics MRI Safety Training course!
Please review a safety video that demonstrates the powerful forces of MRI magnets.
Following written certification, you will be authorized to aid or assist an MRI technologist with patient examination procedures.

MRI Safety and Policies & Procedures.ppt

Read more...

Computers in Medical Education



Computers in Medical Education
Roles of computers in medical education
* Provide facts and information
* Teach strategies for applying knowledge appropriately in medical situations
* Encourage the development of lifelong learning skills

Goals
* Students must learn about physiological processes
* Must understand the relationship between observed illnesses and underlying processes
* Must learn to perform medical procedures
* Must understand the effects of interventions on health outcomes

Basic curriculum
* Premedical requirements
* Medical school
o Basic
+ Physiology
+ Pathophysiology
o Clinical
* Residency
* CME

Teaching strategies
* Lecture
* Interactive

Process
* Presentation of a situation or body of facts containing core knowledge
* Explanation of important concepts and relationships
* How does one derive the concepts
* Why they are important
* Strategy for guiding interaction with the patient

Weaknesses of traditional approach
* Rapid knowledge growth
* Reliance on memorization rather than problem solving
* Reliance on lecture method

Terms
* Computer assisted learning
* Computer based education
* Computer assisted instruction

Advantages of computers in medical education
* Computer can augment, enhance or replace traditional teaching methods
o Rapid access to body of information
+ Data
+ Images
+ Immersive interfaces
o Any time, any place, any pace
o Simulated clinical situation

Advantages
* Interactive learning
o Active vs. passive solving
* Immediate student specific feedback
o Correct vs. incorrect, tailored response
* Tailored instruction
o Focus on areas of weakness
o Request help in interpretation
* Objective testing
o Permits standardized testing
o Self-evaluation
* Fun!

Experimentation
* Safe exploration of what-if in a well done scenario
o You can do things with simulated patients you can’t do with real ones

Case variety
* The ability to experience disease scenarios one otherwise wouldn’t see
o Simple: diabetes
o Complex: multiple disease, multiple medications
Time
* Manage diseases as they evolve over time
o Rapidly evolving problems
o Chronic diseases

Problem-solving competency
* Book smart vs. real-world
* Memorization vs. thinking
* Testing
* Right answer vs. cost-effective vs. safest vs.quickest (fewest steps)

Board examinations
* USMLE test
* CME testing

History of CAI
* Pioneering research in the 1960’s
o Ohio State
+ Tutorial evaluation system
# Constructed choice, T/F, multiple choice, matching or ranking questions
# Immediate response evaluation
# Positive feedback
# Corrective rerouting
+ Authoring language
History
* Barnett MGH 1970
o Simulated patient encounters
+ 30 simulated cases
o Mathematical modeling of physiology
+ Warfarin, insulin, Marshall
o Dxplain
* University of Illinois
o Computer aided simulation of the patient encounter
+ Computer as patient
+ Natural language encounter
* Illinois 1970’s
o Programmed logic for automated teaching (PLATO)
+ Plasma display (required specialized equipment)
+ Combination of text, graphics and photos
o TUTOR authoring language
* University of Wisconsin
o Used simulated case scenarios and estimated the efficiency of the student in arriving at a diagnosis (cost-effectiveness)
* Initial installations site limited
* Subsequent modem dial-up
* Proliferation of medical CAI, CME development entities
* Development of the internet
o Initial material bandwidth limited
o Increasing use of streaming video

Modes of CAI
* Drill and practice
* Didactic
Modes
* Discrimination learning
* Exploration vs. structures interaction
o Hyperlink analogy
o Requires feedback/guidance
* Constrained vs. unconstrained response
o Student may have a pre-selected set of possible response (learn to answer questions)
o Student may be able to probe system using natural language
* Constructive
o Put the body together from pieces of anatomy
Simulation
* Static vs. dynamic
Static simulation
Dynamic simulation
Feedback and guidance
* Feedback
o Correct vs. incorrect
o Summaries
o References
* Guidance
o Tailored feedback
o Hints
o Interactive help
Intelligent tutoring
* Sophisticated systems can
o Intervene if a student goes down an unproductive path
o Gets stuck
o Appears to misunderstand a detail
o Mixed initiative systems
o Coaching vs. tutoring
Graphics and Video
* Storage of images, video etc as part of a multimedia stream
o General appearance
o Skin lesions
o Xrays
o Sounds (cardiology, breath sounds)
Authoring systems
* Generic authoring systems
o McGraw Hill, Boeing
o Simple (constraints) vs. comprehensive (difficult to master)

Examples
* USMLE
* Lister Hill
* Stanford anatomy
* Digital anatomy
* Penn curriculum
* Medical matrix
Continuing medical education
* Echo
* PAC
* CME
Simulators
* ACLS
* Visible human
* Eye simulator
* Other simulators
Future
* Forces for change
* Impediments
o Cost
o Immaturity of authoring tools
o Bandwidth
o Barriers to sharing
+ Institutional jealousy
+ Copyright
* Lack of standard approach
o Authoring software
o Platform
* Explicit integration of CAI into curriculum
* Access to PC’s and LAN

Computers in Medical Education.ppt

Read more...

Radiation Safety Oversight of Surgical Procedures



Radiation Safety Oversight of Surgical Procedures Involving the Use of RAM
By: René Michel, M.S., RSO
VA San Diego Healthcare System, San Diego, CA

Introduction
* The objective of this presentation is to review the various Radiation Safety aspects of a typical medical procedure that involves the use of radiological agents.
* Lymphoscintigraphy (LS) is a medical procedure for the treatment of malignant melanoma and mamma-carcinoma.
* The goal is to identify which sentinel lymph nodes (SLN) have been infiltrated by tumor cells
* The objective of this presentation is to determine what basic radiation safety controls are needed.
* ALARA, dosimetry, contamination control, radioactive waste, etc.

Outline
* Radioactive Drugs Used
* Overview of the Procedure
* Radiation Exposure
* Contamination Control
* Recommendations

Radioactive Drugs
* Many radiopharmaceuticals have been evaluated for and used in LS studies
* The ideal drug, must have the following characteristics:
* Small and uniform particle size
* Short half-life
* Low LET
* Appropriate energy for gamma imaging
* 198Au colloid was one of the first widely used drugs in LS
198Au Characteristics
Particle size: 3-5 nm
Half-life: 2.7 d
Emissions: 412 keV photons plus beta particles
* 198Au was replaced by other agents with the increased availability of 99mTc
* Antimony trisulfide, albumin, human serum albumin, sulfur colloid and nano-colloid
99mTc Characteristics
Particle size: 3-90,000 nm
Half-life: 6 h
Emissions: 140 keV photons

Procedure Overview
* There are three stages in Sentinel Node LS
1) Lymphatic Mapping
2) Intradermal Blue Dye Injection
3) SLN Biopsy
Lymphatic Mapping
* The surgeon injects about 1 mCi of 99mTc unfiltered sulfur colloid intradermally near the lesion.
* The colloid is taken up by the lymphatic system and the patient is imaged with a conventional gamma camera.
* About 20 min from injection dynamic scanning is performed
* A late phase scanning done 90 min after injection shows the location of the SLNs.
* The location of the node is marked on the skin of the patient

Blue Dye Injection
* The patient is moved to the OR to perform biopsy
* To assist in identifying the nodes draining the site of interest, a blue dye is injected

SLN Biopsy

* A surgeon uses the skin mark and a scintillation probe to relocalize the highest area of uptake
* A dissection is performed through soft tissue to remove “hot” nodes located by the gamma probe
* All excised nodes are sent to the pathology lab for histological examination to asses for invasion by tumor cells

Radiation Exposure
* Nuclear Medicine personnel are excluded from this evaluation, they are already closely monitored.
* Radiation exposure to OR and Pathology personnel and the potential for spread of contamination are considered the main radiation safety concerns.

Hazards Control-Radiation Exposure
* The expected radiation exposure to personnel from handling SLN radioactive specimens is very small
* 10-15 SLN procedures/year are performed in most large medical centers
* Several studies have documented dosimetry data
Average whole-body radiation dose equivalent/procedure for hospital personnel from malignant melanoma and mamma-carcinoma SLN surgery with typical activities.
* A surgeon's hand dose has been reported to be 10 mrem (Miner et al. 1999)
* The pathologist’s hand dose is even smaller, ~ 4-6 mrem (Veronesi et al.1999)

Hazards Control- Contamination
* The residual activities a day post surgery are <0.3 mCi for tumor-specimens and <50 nCi for SNLE (Kopp and Wengenmair 2002). * These activities are relatively fixed to the tissue, they do not produce contamination that exceeds the allowed levels. * Standard universal precautions used to prevent infections are sufficient to avoid any kind of incorporation in the bodies of those handling specimens. Specimen Control * Under 10 CFR 20.1905 (NRC 2002), labeling is not required for containers holding less than 1.0 mCi of Tc-99m * Labeling is also exempted if only authorized personnel have access to containers, provided a written record identifies the contents. * Specimen quarantine before gross examination is unnecessary since the level of exposure to personnel is not a safety concern. * Despite the simplicity of the guidelines, each institution is expected to develop and implement procedures for handling radioactive specimens. * Awareness training documentation for all individuals handling these specimens is also necessary. Recommended Guidelines 1. Follow standard universal precautions (e.g., wear hospital gown, surgical gloves, etc.). 2. Using forceps, place all radioactive specimens removed from the patient in a sealed container. 3. In addition to the patient’s name and specimen number, label all resected primary site specimens with the name of the isotope (e.g., 99mTc), date and time when it was collected 4. Maintain security of specimens at all times 1. Upon completion of the surgical procedure, all instruments (e.g., forceps, scalpels, etc.) having had direct contact with the radioactive specimens should be cleaned following standard procedures. 2. All specimens should follow the normal biomedical waste stream and be surveyed before disposal to ensure that radiation levels are not distinguished from background References Radiation Safety Oversight of Surgical Procedures.ppt

Read more...
All links posted here are collected from various websites. No video or powerpoint files are uploaded on this blog. If you are the original author and do not wish to display your content on this blog please Email me anandkumarreddy at gmail dot com I will remove it. The contents of this blog are meant for educational purpose and not for commercial use. If you use any content give due credit to the original author.

This site uses cookies from Google to deliver its services, to personalise ads and to analyse traffic. Information about your use of this site is shared with Google. By using this site, you agree to its use of cookies.

  © Blogger templates Newspaper III by Ourblogtemplates.com 2008

Back to TOP